Kalman Filters

Guillaume Frèche

Version 1.0

Keywords: Kalman filters

In this document, we introduce a generalization of linear regression: **Kalman filters**, we derive their update equations and the corresponding algorithm, and we apply them on some examples.

1 Filter description

In the document about linear regression, we have introduced the following model:

$$
\forall i \in [\![1, n]\!] \qquad y_i = \sum_{j=1}^m w_j x_{i,j} + e_i = \mathbf{x}_i^{\mathsf{T}} \mathbf{w}_m + e_i
$$

where $\mathbf{x}_i=(x_{i,1},...,x_{i,m})^{\sf T}\in\mathbb{R}^m$ and $y_i\in\mathbb{R}$ are given or observed data, e_i is a realization of a zero-mean observation random noise $E\sim\mathcal{N}(0,\sigma_e^2)$ uncorrelated with data, and $\pmb{\mathsf{w}}_m=(w_1,...$, $w_m)^\mathsf{T}$ is a vector of hidden weights that we want to determine. In this document, we replace w by θ , denoting some hidden state that we are trying to determine, and output y_k can now be a vector instead of a scalar. Thereby, we transform the linear regression equation into a so-called **observation equation**:

$$
\mathbf{y}_k = \mathsf{H}_k \boldsymbol{\theta}_k + \mathbf{u}_k \tag{1}
$$

where u_k is a zero-mean random noise representing the uncertainty of the observation measure. The generalization brought by Kalman filters is that hidden parameters can vary over time according to a **state equation**:

$$
\boldsymbol{\theta}_{k+1} = \mathsf{F}_k \boldsymbol{\theta}_k + \mathsf{v}_k \tag{2}
$$

where v_k is a zero-mean random noise representing the quality of the evolution model. Therefore, Kalman filters are entirely described by:

$$
\begin{cases}\n\boldsymbol{\theta}_{k+1} = \mathsf{F}_k \boldsymbol{\theta}_k + \mathsf{v}_k \\
\mathsf{y}_k = \mathsf{H}_k \boldsymbol{\theta}_k + \mathsf{u}_k\n\end{cases}
$$

Matrices F_k and H_k are fixed and given by the model. We suppose that u_k and v_k are uncorrelated second-order white noises with respective covariance matrices $\mathsf{R}_k^u=E\left(\bm{{\sf u}}_k\bm{{\sf u}}_k^\mathsf{T}\right)$ and $\mathsf{R}_k^\mathsf{v}=E\left(\bm{{\sf v}}_k\bm{{\sf v}}_k^\mathsf{T}\right)$. The purpose of Kalman filters is to provide at any time $k\in\mathbb{N}^*$ an estimate $\widehat{\bm{\theta}}_k$ of hidden state variable $\bm{\theta}_k.$ These filters work in two steps:

- \blacktriangleright a **prediction stage** where we estimate prior state variable $\widehat{\theta}_{k+1|k}$ given previous observations $\mathbf{y}_1,...$, $\mathbf{y}_k;$
- \blacktriangleright an **update stage** where we estimate posterior state variable $\widehat{\theta}_{k+1|k+1}$, given the prior $\widehat{\theta}_{k+1|k}$ and the new observation y_{k+1} .

Remarks:

- Finere are also non-linear Kalman filters, for which matrices F_k and H_k are replaced by non-linear mappings. These filters are out of the scope of this document.
- \blacktriangleright The equations above describe Kalman filters with only evolving hidden states and no input or command. This case can be treated by adding a term $G_k\mathbf{x}_k$ in Equation [\(2\)](#page-0-0), where \mathbf{x}_k denotes the input. The derivation in the next subsection can be adapted to this case.

2 Prediction and update equations derivation

First we need the two following definitions:

 \blacktriangleright The **prior innovation** $\widetilde{\theta}_{k+1|k}$ is the difference between the actual state θ_{k+1} and the prior estimate $\widehat{\theta}_{k+1|k}$:

$$
\widetilde{\boldsymbol{\theta}}_{k+1|k} = \boldsymbol{\theta}_{k+1} - \widehat{\boldsymbol{\theta}}_{k+1|k}
$$

It is a random vector with covariance matrix $\mathsf{P}_{k+1|k} = E\left(\widetilde{\bm{\theta}}_{k+1|k} \widetilde{\bm{\theta}}_k^\mathsf{T}\right)$ $_{k+1|k}^{\intercal}$).

Figure 1 The **posterior innovation** $\widetilde{\theta}_{k+1|k+1}$ is the difference between the actual state θ_{k+1} and the posterior estimate $\theta_{k+1|k+1}$:

$$
\widetilde{\boldsymbol\theta}_{k+1|k+1} = \boldsymbol\theta_{k+1} - \widehat{\boldsymbol\theta}_{k+1|k+1}
$$

It is a random vector with covariance matrix $\mathsf{P}_{k+1|k+1} = E\left(\widetilde{\theta}_{k+1|k+1} \widetilde{\theta}_{k+1|k+1}^{\mathsf{T}}\right)$.

Now we define our estimates $\theta_{k+1|k}$ and $\theta_{k+1|k+1}$, and derive the corresponding innovation covariance matrices $\mathsf{P}_{k+1|k}$ and $\mathsf{P}_{k+1|k+1}.$ Since we assumed that $E(\mathsf{v}_k)=0$, based on Equation [\(2\)](#page-0-0), we define the prior state estimate $\bm{\theta}_{k+1|k}$ as

$$
\widehat{\boldsymbol{\theta}}_{k+1|k} = \mathsf{F}_k \widehat{\boldsymbol{\theta}}_{k|k} \tag{3}
$$

The corresponding prior innovation is then

$$
\widetilde{\theta}_{k+1|k} = \theta_{k+1} - \widehat{\theta}_{k+1|k} = F_k \theta_k + \mathbf{v}_k - F_k \widehat{\theta}_{k|k} = F_k \left(\theta_k - \widehat{\theta}_{k|k} \right) + \mathbf{v}_k = F_k \widetilde{\theta}_{k|k} + \mathbf{v}_k
$$

Since posterior innovation $\boldsymbol{\theta}_{k|k}$ and noise \mathbf{v}_k are uncorrelated, we have

$$
P_{k+1|k} = \text{cov}\left(\widetilde{\theta}_{k+1|k}\right) = \text{cov}\left(F_k\widetilde{\theta}_{k|k}\right) + \text{cov}\left(\mathbf{v}_k\right) = F_k P_{k|k} F_k^T + R_k^{\nu}
$$
\n(4)

Since we assumed that $E(\mathbf{u}_k) = 0$, from prior state estimate $\theta_{k+1|k}$ we can define a prior estimate $\hat{\mathbf{y}}_{k+1|k} = H_{k+1}\theta_{k+1|k}$ of the upcoming observation \mathbf{y}_{k+1} . To define the posterior state estimate $\theta_{k+1|k+1}$, we inspire from the RLS weight update equation to write:

$$
\widehat{\theta}_{k+1|k+1} = \widehat{\theta}_{k+1|k} + K_{k+1} \left(\mathbf{y}_{k+1} - \hat{\mathbf{y}}_{k+1|k} \right) = \widehat{\theta}_{k+1|k} + K_{k+1} \left(\mathbf{y}_{k+1} - H_{k+1} \widehat{\theta}_{k+1|k} \right)
$$
(5)

where K_{k+1} is the Kalman gain that we are going to determine. The corresponding posterior innovation is then

$$
\widetilde{\theta}_{k+1|k+1} = \theta_{k+1} - \widehat{\theta}_{k+1|k+1} = \theta_{k+1} - \widehat{\theta}_{k+1|k} - \mathsf{K}_{k+1} \left(\mathsf{H}_k \theta_k + \mathbf{u}_k - \mathsf{H}_{k+1} \widehat{\theta}_{k+1|k} \right)
$$
\n
$$
= \theta_{k+1} - \widehat{\theta}_{k+1|k} - \mathsf{K}_{k+1} \left(\mathsf{H}_k \left(\theta_k - \widehat{\theta}_{k+1|k} \right) + \mathbf{u}_k \right)
$$
\n
$$
= \left(\mathsf{I} - \mathsf{K}_{k+1} \mathsf{H}_k \right) \widetilde{\theta}_{k+1|k} - \mathsf{K}_{k+1} \mathbf{u}_k
$$

Since the prior innovation and the measurement noise \mathbf{u}_k are uncorrelated, we can write :

$$
P_{k+1|k+1} = \text{cov}\left(\widetilde{\theta}_{k+1|k+1}\right) = \text{cov}\left((I - K_{k+1}H_k)\widetilde{\theta}_{k+1|k}\right) + \text{cov}(K_{k+1}u_k)
$$

$$
= (I - K_{k+1}H_{k+1})P_{k+1|k}(I - K_{k+1}H_{k+1})^{\text{T}} + K_{k+1}R_k^uK_{k+1}^{\text{T}}
$$

Hence posterior covariance matrix $P_{k+1|k+1}$ depends on Kalman gain K_{k+1} , and we need to define the latter one so that it minimizes the following error criterion: the expected ℓ_2 norm of innovation $\bm{\theta}_{k+1|k+1}.$ This expected norm is related to matrix $P_{k+1|k+1}$ by its trace:

$$
E\left(\left\|\widetilde{\theta}_{k+1|k+1}\right\|^2\right) = E\left(\widetilde{\theta}_{k+1|k+1}^{\mathsf{T}}\widetilde{\theta}_{k+1|k+1}\right) = E\left(\text{tr}\left(\widetilde{\theta}_{k+1|k+1}^{\mathsf{T}}\widetilde{\theta}_{k+1|k+1}\right)\right) = E\left(\text{tr}\left(\widetilde{\theta}_{k+1|k+1}\widetilde{\theta}_{k+1|k+1}^{\mathsf{T}}\right)\right)
$$

$$
= \text{tr}\left(E\left(\widetilde{\theta}_{k+1|k+1}\widetilde{\theta}_{k+1|k+1}^{\mathsf{T}}\right)\right) = \text{tr}\left(\mathsf{P}_{k+1|k+1}\right) = \xi_{k+1}(\mathsf{K}_{k+1})
$$

Before computing the derivative of criterion ξ_{k+1} with respect to K_{k+1} , let us develop the expression of $P_{k+1|k+1}$:

$$
P_{k+1|k+1} = P_{k+1|k} - P_{k+1|k}H_{k+1}^{T}K_{k+1}^{T} - K_{k+1}H_{k+1}P_{k+1|k} + K_{k+1}H_{k+1}P_{k+1|k}H_{k+1}^{T}K_{k+1}^{T} + K_{k+1}R_{k}^{u}K_{k+1}^{T}
$$

Therefore

$$
\frac{\partial \xi_{k+1}}{\partial K_{k+1}} = \frac{\partial}{\partial K_{k+1}} \text{tr} \left(-P_{k+1|k} H_{k+1}^{\mathsf{T}} K_{k+1}^{\mathsf{T}} - K_{k+1} H_{k+1} P_{k+1|k} + K_{k+1} \left(H_{k+1} P_{k+1|k} H_{k+1}^{\mathsf{T}} + R_k^{\nu} \right) K_{k+1}^{\mathsf{T}} \right)
$$
\n
$$
= -2 \left(H_{k+1} P_{k+1|k} \right)^{\mathsf{T}} + 2K_{k+1} \left(H_{k+1} P_{k+1|k} H_{k+1}^{\mathsf{T}} + R_k^{\nu} \right)
$$

Since the optimal gain corresponds to $\frac{\partial \xi_{k+1}}{\partial \mathbf{z}}$ $\frac{\partial \mathbf{S}_{k+1}}{\partial \mathbf{K}_{k+1}} = 0$, we get:

$$
K_{k+1} = P_{k+1|k} H_{k+1}^{T} \left(H_{k+1} P_{k+1|k} H_{k+1}^{T} + R_{k}^{u} \right)^{-1}
$$
(6)

If we replace the expression of the optimal gain in $P_{k+1|k+1}$, we get:

$$
P_{k+1|k+1} = P_{k+1|k} - K_{k+1} \left(H_{k+1} P_{k+1|k} H_{k+1}^T + R_k^u \right) K_{k+1}^T = P_{k+1|k} - K_{k+1} H_{k+1} P_{k+1|k}
$$

which finally yields to:

$$
P_{k+1|k+1} = (I - K_{k+1}H_{k+1})P_{k+1|k}
$$
\n(7)

Finally we simply initialize the algorithm with $P_{0|0}=0$, as we have done no estimation yet. The initialization of $\bm{\theta}_{k|k}$ depends on how much information we have about the system at the beginning of the estimation process. We wrap up equations [\(3\)](#page-1-0), [\(4\)](#page-1-1), [\(5\)](#page-1-2), [\(6\)](#page-2-0) and [\(7\)](#page-2-1) into the following algorithm.

3 Application: trajectory tracking

Imagine a mobile object which can only moves horizontally in one direction. We discretize time with step T . We denote $x_k = x(k)$ the position of the mobile, $\dot{x}_k = \dot{x}(k)$ its speed and $\ddot{x}_k = \ddot{x}(k)$ its acceleration. This object is initially at position $x_0=0$ with speed $\dot x_0=v_0.$ All vertical forces compensate and only a random acceleration $a_k\sim\mathcal{N}(0,\sigma^2_a)$ is applied $\sqrt{ }$ \setminus

in the motion direction. The state vector that we want to estimate is $\boldsymbol{\theta}_k =$ \mathcal{L} xk \dot{x}_k . By the second law of dynamics, $\ddot{x}_k = a_k$.

Algorithm 1 Kalman filter

Taylor series of $x(t)$ and $\dot{x}(t)$ give:

$$
x_{k+1} = x((k+1)T) = x(kT) + T\dot{x}(kT) + \frac{T^2}{2}\ddot{x}(kT) + o(T^2) = x_k + T\dot{x}_k + \frac{T^2}{2}a_k + o(T^2)
$$

$$
\dot{x}_{k+1} = \dot{x}((k+1)T) = \dot{x}(kT) + T\ddot{x}(kT) + o(T) = \dot{x}_k + Ta_k + o(T)
$$

We can approximate these expressions matricially:

$$
\boldsymbol{\theta}_{k+1} = \left(\begin{array}{cc} 1 & \mathcal{T} \\ 0 & 1 \end{array}\right) \boldsymbol{\theta}_k + \left(\begin{array}{c} \frac{\mathcal{T}^2}{2} \\ \mathcal{T} \end{array}\right) \boldsymbol{a}_k
$$

which gives:

$$
\mathsf{F}_k = \mathsf{F} = \left(\begin{array}{cc} 1 & \mathsf{T} \\ 0 & 1 \end{array} \right) \qquad \mathsf{v}_k = \left(\begin{array}{c} \frac{\mathsf{T}^2}{2} \\ \mathsf{T} \end{array} \right) a_k \qquad \mathsf{R}_k^{\mathsf{v}} = \mathsf{R}^{\mathsf{v}} = \sigma_a^2 \left(\begin{array}{cc} \frac{\mathsf{T}^4}{4} & \frac{\mathsf{T}^3}{2} \\ \frac{\mathsf{T}^3}{2} & \mathsf{T}^2 \end{array} \right)
$$

The observation variable y_k is simply a noisy observation of position x_k , i.e.

$$
y_k = \left(\begin{array}{cc} 1 & 0 \end{array}\right)\boldsymbol{\theta}_k + u_k
$$

where $\mathit{u_{k}} \sim \mathcal{N}(0, \sigma^{2})$ is observation noise. Thus we have

$$
H_k = H = \begin{pmatrix} 1 & 0 \end{pmatrix} \qquad R_k^u = R^u = \sigma^2
$$

For the initialization, the initial position $x_0 = 0$ is known. The initial speed v_0 is unknown but we assume it to be a realization of a zero-mean random variable, thus we will set our initial speed estimation to 0. The initial posterior state estimate is then $\mathbf{\hat{x}}_{0|0} = (0, 0)^{\mathsf{T}}$.

Figure [1](#page-4-0) displays the evolution over time of the true position, the noisy observation of the position and the position estimated by the Kalman filter. Figure [2](#page-4-1) shows the evolution of the true speed and the speed estimated by the Kalman filter. Finally, Figure [3](#page-5-0) presents the error deviation of the observed and estimated positions from the true position.

Figure 1: True, observed and estimated positions

Figure 2: True and estimated speeds

Figure 3: Error deviations of observed and estimated positions

4 Linear regression as a special case of Kalman filter

Kalman filters bring the addition of state evolution to linear regression. Therefore, the latter one can be seen as a special case of Kalman filter with a constant hidden state, the weights $w = \theta$ that we are trying to estimate. The corresponding prediction and update equations are then:

$$
\mathbf{w}_{k+1} = \mathbf{I}_m \mathbf{w}_k = \mathbf{w}_k \quad \text{and} \quad y_k = \mathbf{x}_k^{\mathsf{T}} \mathbf{w}_k + e_k
$$

where $\mathsf{F}_k=\mathsf{I}_m$, $\mathsf{v}_k=0$, $\mathsf{H}_k=\mathsf{x}_k^\mathsf{T}$ and $u_k=e_k$. Then, innovation covariance matrices and Kalman gain can be written:

$$
\mathsf{P}_{k+1|k} = \mathsf{F}_k \mathsf{P}_{k|k} \mathsf{F}_k^{\mathsf{T}} + \mathsf{R}_k^{\mathsf{v}} = \mathsf{P}_{k|k}
$$

$$
K_{k+1} = P_{k+1|k} H_{k+1}^T \left(H_{k+1} P_{k+1|k} H_{k+1}^T + R_k^u \right)^{-1} = \frac{P_{k|k} \mathbf{x}_{k+1}}{\mathbf{x}_{k+1}^T P_{k|k} \mathbf{x}_{k+1} + \sigma_e^2}
$$

$$
P_{k+1|k+1} = (I_m - K_{k+1} \mathbf{x}_{k+1}^T) P_{k|k}
$$

Therefore, we retrieve RLS Equations by substituting $P_{k|k} \leftrightarrow P_k$ and $K_{k+1} \leftrightarrow g_{k+1}$.