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In this document, we introduce a generalization of linear regression: Kalman filters, we derive their update equations and

the corresponding algorithm, and we apply them on some examples.

1 Filter description

In the document about linear regression, we have introduced the following model:

∀i ∈ J1, nK yi =
m∑
j=1

wjxi ,j + ei = xTi wm + ei

where xi = (xi ,1, ... , xi ,m)
T ∈ Rm and yi ∈ R are given or observed data, ei is a realization of a zero-mean observation

random noise E ∼ N (0,σ2
e ) uncorrelated with data, and wm = (w1, ... ,wm)

T is a vector of hidden weights that we want to

determine. In this document, we replace w by θ, denoting some hidden state that we are trying to determine, and output yk
can now be a vector instead of a scalar. Thereby, we transform the linear regression equation into a so-called observation

equation:

yk = Hkθk + uk (1)

where uk is a zero-mean random noise representing the uncertainty of the observation measure. The generalization brought

by Kalman filters is that hidden parameters can vary over time according to a state equation:

θk+1 = Fkθk + vk (2)

where vk is a zero-mean random noise representing the quality of the evolution model. Therefore, Kalman filters are entirely

described by:  θk+1 = Fkθk + vk

yk = Hkθk + uk

Matrices Fk and Hk are fixed and given by the model. We suppose that uk and vk are uncorrelated second-order white

noises with respective covariance matrices Ru
k = E

(
ukuTk

)
and Rv

k = E
(
vkvTk

)
. The purpose of Kalman filters is to provide

at any time k ∈ N∗ an estimate θ̂k of hidden state variable θk . These filters work in two steps:

I a prediction stage where we estimate prior state variable θ̂k+1|k given previous observations y1, ... , yk ;

I an update stage where we estimate posterior state variable θ̂k+1|k+1, given the prior θ̂k+1|k and the new observation

yk+1.
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2 PREDICTION AND UPDATE EQUATIONS DERIVATION

Remarks:

I There are also non-linear Kalman filters, for which matrices Fk and Hk are replaced by non-linear mappings. These

filters are out of the scope of this document.

I The equations above describe Kalman filters with only evolving hidden states and no input or command. This case can

be treated by adding a term Gkxk in Equation (2), where xk denotes the input. The derivation in the next subsection

can be adapted to this case.

2 Prediction and update equations derivation

First we need the two following definitions:

I The prior innovation θ̃k+1|k is the difference between the actual state θk+1 and the prior estimate θ̂k+1|k :

θ̃k+1|k = θk+1 − θ̂k+1|k

It is a random vector with covariance matrix Pk+1|k = E
(
θ̃k+1|k θ̃

T

k+1|k

)
.

I The posterior innovation θ̃k+1|k+1 is the difference between the actual state θk+1 and the posterior estimate

θ̂k+1|k+1:

θ̃k+1|k+1 = θk+1 − θ̂k+1|k+1

It is a random vector with covariance matrix Pk+1|k+1 = E
(
θ̃k+1|k+1θ̃

T

k+1|k+1

)
.

Now we define our estimates θ̂k+1|k and θ̂k+1|k+1, and derive the corresponding innovation covariance matrices Pk+1|k and

Pk+1|k+1. Since we assumed that E (vk) = 0, based on Equation (2), we define the prior state estimate θ̂k+1|k as

θ̂k+1|k = Fk θ̂k|k (3)

The corresponding prior innovation is then

θ̃k+1|k = θk+1 − θ̂k+1|k = Fkθk + vk − Fk θ̂k|k = Fk

(
θk − θ̂k|k

)
+ vk = Fk θ̃k|k + vk

Since posterior innovation θ̃k|k and noise vk are uncorrelated, we have

Pk+1|k = cov
(
θ̃k+1|k

)
= cov

(
Fk θ̃k|k

)
+ cov (vk) = FkPk|kF

T
k + Rv

k (4)

Since we assumed that E (uk) = 0, from prior state estimate θ̂k+1|k we can define a prior estimate ŷk+1|k = Hk+1θ̂k+1|k of

the upcoming observation yk+1. To define the posterior state estimate θ̂k+1|k+1, we inspire from the RLS weight update

equation to write:

θ̂k+1|k+1 = θ̂k+1|k + Kk+1

(
yk+1 − ŷk+1|k

)
= θ̂k+1|k + Kk+1

(
yk+1 − Hk+1θ̂k+1|k

)
(5)

where Kk+1 is the Kalman gain that we are going to determine. The corresponding posterior innovation is then

θ̃k+1|k+1 = θk+1 − θ̂k+1|k+1 = θk+1 − θ̂k+1|k − Kk+1

(
Hkθk + uk − Hk+1θ̂k+1|k

)
= θk+1 − θ̂k+1|k − Kk+1

(
Hk

(
θk − θ̂k+1|k

)
+ uk

)
= (I− Kk+1Hk) θ̃k+1|k − Kk+1uk
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3 APPLICATION: TRAJECTORY TRACKING

Since the prior innovation and the measurement noise uk are uncorrelated, we can write :

Pk+1|k+1 = cov
(
θ̃k+1|k+1

)
= cov

(
(I− Kk+1Hk) θ̃k+1|k

)
+ cov (Kk+1uk)

= (I− Kk+1Hk+1) Pk+1|k (I− Kk+1Hk+1)
T + Kk+1R

u
kK

T
k+1

Hence posterior covariance matrix Pk+1|k+1 depends on Kalman gain Kk+1, and we need to define the latter one so that it

minimizes the following error criterion: the expected `2 norm of innovation θ̃k+1|k+1. This expected norm is related to matrix

Pk+1|k+1 by its trace:

E

(∥∥∥θ̃k+1|k+1

∥∥∥2) = E
(
θ̃
T

k+1|k+1θ̃k+1|k+1

)
= E

(
tr
(
θ̃
T

k+1|k+1θ̃k+1|k+1

))
= E

(
tr
(
θ̃k+1|k+1θ̃

T

k+1|k+1

))
= tr

(
E
(
θ̃k+1|k+1θ̃

T

k+1|k+1

))
= tr

(
Pk+1|k+1

)
= ξk+1(Kk+1)

Before computing the derivative of criterion ξk+1 with respect to Kk+1, let us develop the expression of Pk+1|k+1:

Pk+1|k+1 = Pk+1|k − Pk+1|kH
T
k+1K

T
k+1 − Kk+1Hk+1Pk+1|k + Kk+1Hk+1Pk+1|kH

T
k+1K

T
k+1 + Kk+1R

u
kK

T
k+1

Therefore

∂ξk+1

∂Kk+1
=

∂

∂Kk+1
tr
(
−Pk+1|kH

T
k+1K

T
k+1 − Kk+1Hk+1Pk+1|k + Kk+1

(
Hk+1Pk+1|kH

T
k+1 + Ru

k

)
KT
k+1

)
= −2

(
Hk+1Pk+1|k

)T
+ 2Kk+1

(
Hk+1Pk+1|kH

T
k+1 + Ru

k

)
Since the optimal gain corresponds to

∂ξk+1

∂Kk+1
= 0, we get:

Kk+1 = Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 + Ru

k

)−1
(6)

If we replace the expression of the optimal gain in Pk+1|k+1, we get:

Pk+1|k+1 = Pk+1|k − Kk+1

(
Hk+1Pk+1|kH

T
k+1 + Ru

k

)
KT
k+1 = Pk+1|k − Kk+1Hk+1Pk+1|k

which finally yields to:

Pk+1|k+1 = (I− Kk+1Hk+1) Pk+1|k (7)

Finally we simply initialize the algorithm with P0|0 = 0, as we have done no estimation yet. The initialization of θ̂k|k depends

on how much information we have about the system at the beginning of the estimation process. We wrap up equations (3),

(4), (5), (6) and (7) into the following algorithm.

3 Application: trajectory tracking

Imagine a mobile object which can only moves horizontally in one direction. We discretize time with step T . We denote

xk = x(kT ) the position of the mobile, ẋk = ẋ(kT ) its speed and ẍk = ẍ(kT ) its acceleration. This object is initially at

position x0 = 0 with speed ẋ0 = v0. All vertical forces compensate and only a random acceleration ak ∼ N (0,σ2
a) is applied

in the motion direction. The state vector that we want to estimate is θk =

 xk

ẋk

. By the second law of dynamics, ẍk = ak .
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3 APPLICATION: TRAJECTORY TRACKING

Algorithm 1 Kalman filter

1: procedure KALMAN-FILTER(y, F, Rv , H, Ru)
2: Input yk , Fk , Rv

k , Hk and Ru
k for k ∈ J1, nK

3: P0|0 = 0
4: for k ∈ J0, nK do
5: Update covariance matrices and Kalman gain
6: Pk+1|k ← FkPk|kF

T
k + Rv

k

7: Kk+1 ← Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 + Ru

k

)−1
8: Pk+1|k+1 ← (I− Kk+1Hk+1) Pk+1|k
9: Update state variables

10: θ̂k+1|k ← Fk θ̂k|k

11: θ̂k+1|k+1 ← θ̂k+1|k + Kk+1

(
yk+1 − Hk+1θ̂k+1|k

)
12: end for
13: Return x̂
14: end procedure

Taylor series of x(t) and ẋ(t) give:

xk+1 = x((k + 1)T ) = x(kT ) + Tẋ(kT ) +
T 2

2
ẍ(kT ) + o(T 2) = xk + Tẋk +

T 2

2
ak + o(T 2)

ẋk+1 = ẋ((k + 1)T ) = ẋ(kT ) + Tẍ(kT ) + o(T ) = ẋk + Tak + o(T )

We can approximate these expressions matricially:

θk+1 =

 1 T

0 1

θk +

 T 2

2

T

 ak

which gives:

Fk = F =

 1 T

0 1

 vk =

 T 2

2

T

 ak Rv
k = Rv = σ2

a

 T 4

4

T 3

2
T 3

2
T 2


The observation variable yk is simply a noisy observation of position xk , i.e.

yk =
(

1 0
)
θk + uk

where uk ∼ N (0,σ2) is observation noise. Thus we have

Hk = H =
(

1 0
)

Ru
k = Ru = σ2

For the initialization, the initial position x0 = 0 is known. The initial speed v0 is unknown but we assume it to be a realization

of a zero-mean random variable, thus we will set our initial speed estimation to 0. The initial posterior state estimate is then

x̂0|0 = (0, 0)T.

Figure 1 displays the evolution over time of the true position, the noisy observation of the position and the position estimated

by the Kalman filter. Figure 2 shows the evolution of the true speed and the speed estimated by the Kalman filter. Finally,

Figure 3 presents the error deviation of the observed and estimated positions from the true position.
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3 APPLICATION: TRAJECTORY TRACKING

Figure 1: True, observed and estimated positions

Figure 2: True and estimated speeds
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4 LINEAR REGRESSION AS A SPECIAL CASE OF KALMAN FILTER

Figure 3: Error deviations of observed and estimated positions

4 Linear regression as a special case of Kalman filter

Kalman filters bring the addition of state evolution to linear regression. Therefore, the latter one can be seen as a special

case of Kalman filter with a constant hidden state, the weights w = θ that we are trying to estimate. The corresponding

prediction and update equations are then:

wk+1 = Imwk = wk and yk = xTkwk + ek

where Fk = Im, vk = 0, Hk = xTk and uk = ek . Then, innovation covariance matrices and Kalman gain can be written:

Pk+1|k = FkPk|kF
T
k + Rv

k = Pk|k

Kk+1 = Pk+1|kH
T
k+1

(
Hk+1Pk+1|kH

T
k+1 + Ru

k

)−1
=

Pk|kxk+1

xTk+1Pk|kxk+1 + σ2
e

Pk+1|k+1 =
(
Im − Kk+1x

T
k+1

)
Pk|k

Therefore, we retrieve RLS Equations by substituting Pk|k ↔ Pk and Kk+1 ↔ gk+1.
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