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In this document, we present the simplest model of regression: linear regression. We introduce the model, we de-

rive the least squares exact solution and the recursive least squares (RLS) algorithm, we extend to some variants of the

model and we apply these results to autoregressive signals.

1 Problem presentation

Suppose that we are given n ∈ N∗ vectors xi = (xi ,1, ... , xi ,m)T ∈ Rm and n scalars y1, ... , yn ∈ R. We aim at determining

weights w1, ... ,wm such that for any i ∈ J1, nK,

yi =
m∑
j=1

wjxi ,j = xTi wm

This problem is called linear regression. It can be rewritten in matrix form as

yn = Xn,mwm where yn =


y1
...

yn

 Xn,m =


x1,1 · · · x1,m

...
. . .

...

xn,1 · · · xn,m

 =


xT1
...

xTn

 wm =


w1

...

wm


Now, this is a linear system with data yn and Xn,m, and unknown wm. There are three possible cases:

I If n < m, the linear system is underdetermined and admits an infinity of solutions wm. This case will be treated in an

upcoming document.

I If n = m, the linear system is determined. If det(Xm,m) 6= 0, i.e. if matrix Xm,m is invertible, then the solution is

given by wm = X−1m,mym. If det(Xm,m) = 0, at least one row of this matrix is linearly dependent on the others, and the

corresponding equations can be removed from the system, which boils down to the underdetermined case.

I If n > m, the linear system is overdetermined, meaning that it does not necessarily have an exact solution. In this

document, we are interested in this case.

2 Estimation perspective

If yn was obtained by computing Xn,mwm, then the linear regression problem should have an exact solution: wm, even for

n > m. However, if yn is a noisy version of Xn,mwm, there might not be an exact solution. We denote ŷn(Xn,m,wm) =
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3 LEAST SQUARES EXACT SOLUTION

Xn,mwm the exact noiseless output and

yn = ŷn(Xn,m,wm) + en = Xn,mwm + en (1)

the noisy observed output, where en = (e1, ... , en)T is a vector of n i.i.d realizations of some random variable E . We focus

here on the case where E is a zero-mean random variable following a normal distribution E ∼ N (0,σ2
e ) for some error

variance σ2
e > 0. In this case, yn is a realization of random vector Yn(Xn,m,wm) following distribution N (ŷn(Xn,m,wm), Σ),

where Σ = σ2
e In. The principle of parametric estimation is to provide an estimator ŵm of the unknown weights wm based

on the optimization of some function depending on observed data yn and Xn,m, and on hidden weights wm. A commonly

used function is the likelihood defined as:

L(yn, Xn,m,wm) = fYn(Xn,m,wm)(yn)

that is, the probability density of random vector Yn(Xn,m,wm) outcome being yn. The corresponding estimator called the

maximum likelihood estimator is given by:

ŵm = arg max
wm∈Rm

(L(yn, Xn,m,wm)) = arg max
wm∈Rm

(
fYn(Xn,m,wm)(yn)

)
For some distributions f , such as the normal distribution that we develop later, it is more interesting to compute the log

likelihood:

λ(yn, Xn,m,wm) = lnL(yn, Xn,m,wm) = ln fYn(Xn,m,wm)(yn)

Since logarithm is monotonically increasing, maximum likelihood and maximum log-likelihood estimators are identical. The

latter one is given by:

ŵm = arg max
wm∈Rm

(λ(yn, Xn,m,wm)) = arg max
wm∈Rm

(
ln fYn(Xn,m,wm)(yn)

)
Now let us compute this maximum log likelihood estimator in the case of additive gaussian noise.

ln fYn(Xn,m,wm)(yn) = ln

(
1

(2π)
n
2

√
det(Σ)

exp

(
−1

2
(yn − ŷn(Xn,m,wm))TΣ−1(yn − ŷn(Xn,m,wm))

))

= −n

2
ln (2π)− n ln (σe)− 1

2σ2
e

‖yn − ŷn(Xn,m,wm)‖2

where we consider the `2-norm on Rn:

∀v = (v1, ... , vn)T ∈ Rn ‖v‖2 =
n∑

i=1

v2
i = vTv

Since noise variance σ2
e is a fixed parameter of the problem, we see that maximizing log likelihood is equivalent to minimizing

the `2-distance between noisy observation yn and noiseless outcome ŷn(Xn,m,wm) = Xn,mwm. This subsequent problem

is known as least squares.

3 Least squares exact solution

Our minimization problem is now:

ŵm = arg min
vm∈Rm

‖yn − Xn,mvm‖2
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4 RECURSIVE LEAST SQUARES

Since ` : v 7→ yn − Xn,mv is linear and ψ : v 7→ ‖v‖2 is convex, mapping ϕ = ψ ◦ ` : v 7→ ‖yn − Xn,mv‖2 is convex and

admits a unique global minimum in ŵm on Rm. To find the minimum, we compute the derivative ϕ with respect to v using the

chain rule:

∂ϕ

∂v
=
∂`

∂v

∂ψ

∂`

On one hand,

∂ψ

∂`
=

(
∂ψ

∂`1
, ... ,

∂ψ

∂`n

)T

= (2`1, ... , 2`n)T = 2`

On the other hand,

∂`

∂v
=


∂`1
∂v1

· · · ∂`n
∂v1

...
. . .

...
∂`1
∂vm

· · · ∂`n
∂vm


For any i ∈ J1,mK and any j ∈ J1, nK,

∂`j
∂vi

=
∂

∂vi

(
yj − (xj ,1, ... , xj ,m)(v1, ... , vm)T

)
= −xj ,i

which implies
∂`

∂v
= −XT

n,m and
∂ϕ

∂v
= −2XT

n,m (yn − Xn,mv). Thus we have

∂ϕ

∂v
(ŵm) = −2XT

n,myn + 2XT
n,mXn,mŵm = 0

Finally, we find a direct expression of least squares estimator ŵm as a function of data Xn,m and yn:

ŵm =
(
XT
n,mXn,m

)−1
XT
n,myn (2)

Remark: It would be tempting to simplify this expression by writing
(
XT
n,mXn,m

)−1
= X−1n,m

(
XT
n,m

)−1
, but we have to keep in

mind that, since m > n, we are dealing with rectangular matrices Xn,m which might not have well-defined inverses. Therefore,

we will stick with Equation (2).

4 Recursive least squares

Equation (2) gives the expression of the weights knowning the n samples xi and yi at once. With the recursive least

squares (RLS) algorithm, we can update the weights with new data on the fly. Imagine that we have already found the

least squares estimator ŵ(k)
m for yk = Xk,mw

(k)
m and we want to use this estimator to solve the least squares problem

yk+1 = Xk+1,mw
(k+1)
m . From Equation (2), we have

ŵ(k+1)
m =

(
XT
k+1,mXk+1,m

)−1
XT
k+1,myk+1 =

(
XT
k,mXk,m + xk+1x

T
k+1

)−1 (
XT
k,myk + xk+1yk+1

)
(3)

We need the following inversion lemma to go further:

Lemma 4.1
I Woodbury matrix identity: If A ∈ Rp , B ∈ Rp×q , C ∈ Rp and D ∈ Rq×p are four matrices where A and C are
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4 RECURSIVE LEAST SQUARES

invertible, then

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1

I Sherman-Morrison formula: in particular, if b ∈ Rp and d ∈ Rp are vectors,

(A + bdT)−1 = A−1 − A−1bdTA−1

1 + dTA−1b
(4)

Note that denominator 1 + dTA−1b is a scalar.

PROOF : We have

(A + BCD)(A−1 − A−1B(C−1 + DA−1B)−1DA−1)

= Ip + BCDA−1 − B(C−1 + DA−1B)−1DA−1 − BCDA−1B(C−1 + DA−1B)−1DA−1

= Ip + BCDA−1 −
[
B(C−1 + DA−1B)−1DA−1 + BCDA−1B(C−1 + DA−1B)−1DA−1

]
= Ip + BCDA−1 −

[
B + BCDA−1B

]
(C−1 + DA−1B)−1DA−1

= Ip + BCDA−1 − BC
[
C−1 + DA−1B

]
(C−1 + DA−1B)−1DA−1

= Ip + BCDA−1 − BCDA−1 = Ip

We get the same result if we change the order of the two factors, thereby proving Woodbury matrix identity. We obtain the

Sherman-Morrison formula by setting B = b and D = dT as vectors, and C = 1 as a scalar.

We apply this lemma with A = XT
k,mXk,m and b = d = xk+1. This gives

ŵ(k+1)
m =

(
(XT

k,mXk,m)−1 −
(XT

k,mXk,m)−1xk+1xTk+1(XT
k,mXk,m)−1

1 + xTk+1(XT
k,mXk,m)−1xk+1

)(
XT
k,myk + xk+1yk+1

)
Setting Pk = (XT

k,mXk,m)−1, we can develop:

ŵ(k+1)
m = PkXT

k,myk + Pkxk+1yk+1 −
Pkxk+1xTk+1Pk

1 + xTk+1Pkxk+1

(
XT
k,myk + xk+1yk+1

)
= ŵ(k)

m +
Pkxk+1

(
1 + xTk+1Pkxk+1

)
yk+1

1 + xTk+1Pkxk+1
−

Pkxk+1xTk+1Pk

(
XT
k,myk + xk+1yk+1

)
1 + xTk+1Pkxk+1

= ŵ(k)
m +

Pkxk+1

(
yk+1 − xTk+1PkXT

k,myk
)

1 + xTk+1Pkxk+1

= ŵ(k)
m +

Pkxk+1

1 + xTk+1Pkxk+1

(
yk+1 − xTk+1ŵ

(k)
m

)
Finally, we rewrite this expression as:

ŵ(k+1)
m = ŵ(k)

m + gk+1

(
yk+1 − xTk+1ŵ

(k)
m

)
(5)

where

gk+1 =
(XT

k,mXk,m)−1xk+1

1 + xTk+1(XT
k,mXk,m)−1xk+1

=
Pkxk+1

1 + xTk+1Pkxk+1
∈ Rm (6)

This latter term can be considered as a special form of Kalman gain, that we will detail in an upcoming document. The major
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issue in computing gk+1 is to determine the inverse matrix Pk =
(
XT
k,mXk,m

)−1
. We have

Pk+1 = (XT
k+1,mXk+1,m)−1 = (XT

k,mXk,m + xk+1x
T
k+1)−1

Using again the inversion lemma,

Pk+1 = Pk −
Pkxk+1xTk+1Pk

1 + xTk+1Pkxk+1

Using the definition (6) of gk+1, we get:

Pk+1 = Pk − gk+1x
T
k+1Pk = (Im − gk+1x

T
k+1)Pk (7)

We can wrap up identities (5), (6) and (7) into the following algorithm. With no prior information on data, it is common to

initialize the algorithm with ŵ
(0)
m = 0 and P0 = δIm, where δ � σ2

e .

Algorithm 1 Recursive least squares

1: procedure RLS(Xn,m, y)
2: Input xi = (xi ,1, ... , xi ,m) for i ∈ J1, nK
3: Input yi for i ∈ J1, nK
4: Set ŵ(0)

m = 0
5: Set P0 = δIm
6: for k ∈ J1, nK do

7: gk ←
Pk−1xk

1 + xTkPk−1xk

8: ŵ
(k)
m ← ŵ

(k−1)
m + gk

(
yk − xTk ŵ

(k−1)
m

)
9: Pk ← (Im − gkxTk )Pk−1

10: end for
11: Return ŵ

(n)
m

12: end procedure

5 Variants

We study some variants of linear regression, where we only need to adapt the definition of the data matrix Xn,m without

changing the RLS algorithm to update the weights.

5.1 Affine regression

Suppose that we are given n ∈ N∗ vectors xi = (xi ,1, ... , xi ,m)T ∈ Rm and n scalars y1, ... , yn and we are trying to find

weights w1, ... ,wm and bias w0 such that for any i ∈ J1, nK,

yi =
m∑
j=1

wjxi ,j + w0
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5.2 Polynomial regression 5 VARIANTS

This expression can be seen as the inner product in Rm+1 of vectors (1, xi ,1, ... , xi ,m) and (w0,w1, ... ,wm), yielding to:

Xn,m+1 =


1 x1,1 · · · x1,m
...

...
. . .

...

1 xn,1 · · · xn,m

 and wm+1 =


w0

w1

...

wm



5.2 Polynomial regression

Suppose that we are given n distinct scalar input xi yielding to the polynomial ouput:

∀i ∈ J1, nK yi = P(xi ) = w0 + w1xi + · · ·+ wmx
m
i = xTi wm+1 where xi = (1, xi , ... , xmi )T

This is a particular case of affine regression where xi ,j = x ji . We can write:

Xn,m+1 =


1 x1 · · · xm1
...

...
. . .

...

1 xn · · · xmn

 and wm+1 =


w0

w1

...

wm


Remark: When n = m + 1, the system is determined and known as Lagrange interpolation. Its exact solution is

P(x) =
n∑

i=1

yi`i (x)

where `i is the i -th Lagrange polynomial

`i (x) =
∏

j∈J1,nK
j 6=i

x − xj
xi − xj

such that `i (xi ) = 1 and `i (xj) = 0 for j 6= i .

5.3 Comparison of affine regression, quadratic regression and Lagrange interpolation

We are given a black box producing a noisy quadratic function:

y = a(x − α)2 + b + e = w0 + w1x + w2x
2 + e

where e is a realization of some additive zero-mean gaussian noise E ∼ N (0,σ2). We propose three models for this

simulation: affine regression, quadratic regression (i.e. polynomial of order 2) and Lagrange interpolation. We train our

models on ntrain = 20 samples and test them on ntest = 20 samples. Figure 1 compares the performance of the 3 models.

For each regression method and for both training and test datasets, we computed the mean square error between the ouput

generated by the black box and the ouput produced by the three models.

Affine regression Quadratic regression Lagrange interpolation

Training error 63.835 2.8658× 10−2 7.0271× 10−15

Test error 67.922 5.5889× 10−2 9.6124× 107
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5 VARIANTS 5.4 Bilinear regression

Figure 1: Performance comparison of the 3 regression models

First, note that errors of affine and quadratic regression are of the same order of magnitude on both training and test datasets,

with the quadratic regression exhibiting better performance than the affine one, which should not be surprising since the

hidden function is quadratic. On the other hand, Lagrange interpolation is excellent on training, its deviation from 0 being due

to computational approximations, while it performs very poorly on the test dataset. This phenomenon is called overfitting.

When we choose a model, we fix the hypothesis space, i.e. a space of functions from which we are going to pick the

mapping fitting best our datasets. For affine regression, this is the space P1 of polynomials of degree at most 1, for quadratic

regression, the space P2 of polynomials of degree at most 2, which includes P1, and for Lagrange interpolation, the space

Pntrain of polynomials of degree at most ntrain, including both previous spaces. With affine regression, the set is too small

and the RLS algorithm has difficulties finding a close estimate. This issue is called underfitting and is usually solved by

expanding the hypothesis space, as we do by changing P1 into P2 switching from affine to quadratic regression. With

Lagrange interpolation and overfitting, the hypothesis space is too large, and although the algorithm works very well during

training, it has difficulties generalizing to new data.

5.4 Bilinear regression

Now suppose that we are given n ∈ N∗ vectors xi = (xi ,1, ... , xi ,m) ∈ Rm and n scalars y1, ... , yn and we are trying to find

a weight matrix Qm = (qj ,k) such that for any i ∈ J1, nK,

yi =
m∑
j=1

m∑
k=1

qj ,kxi ,jxi ,k = xTi Qmxi

By commutativity of the product xi ,jxi ,k = xi ,kxi ,j , we can have two matrices Qm and Rm such that qj ,k + qk,j = rj ,k + rk,j ,

and xTi Qmxi = xTi Rmxi , thus matrix Qm is not unique. To impose unicity, we set Qm to be an upper triangular matrix. To
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6 THE AUTOREGRESSIVE MODEL

have a form similar to the previous ones, we flatten matrix Qm:

yi = x̃Ti Q̃m with

 x̃i = (x2i ,1, xi ,1xi ,2, ... , xi ,1xi ,m, x2i ,2, ... , xi ,jxi ,k , ... , x2i ,m)T

Q̃m = (q1,1, q1,2, ... , q1,m, q2,2, ... , qi ,j , ... , qm,m)T

6 The autoregressive model

6.1 Presentation

A discrete-time signal (zk)k∈N is autoregressive of order m if its samples satisfy a recursive relation of the form:

∀k ∈ N k ≥ m zk =
m∑
i=1

wizk−i + ek

where ek is a realization of a zero-mean additive random noise E . If z is of finite length n > m, we can deduce n −m linear

regression relations

yk = xTkwm + ek where yk = zk and xTk = (zk−1, ... , zk−m)

hence the name autoregressive.

6.2 Weighted RLS

For these signals, hidden weights wm may vary over time and while applying recursive least squares, we want to give less

importance to previous samples as they are further in the past. This is why we can modify Equation (3) to introduce a

forgetting factor λ ∈ [0, 1]:

ŵ(k+1)
m =

(
λXT

k,mXk,m + xk+1x
T
k+1

)−1 (
λXT

k,myk + xk+1yk+1

)
We get

ŵ(k+1)
m = ŵ(k)

m + gk+1

(
yk+1 − xTk+1ŵ

(k)
m

)
where

gk+1 =
Pkxk+1

λ+ xTk+1Pkxk+1
and Pk+1 =

1

λ
(Im − gk+1x

T
k+1)Pk

If λ = 1, we retrieve regular RLS described earlier.

6.3 Application to speech processing

The autoregressive model is a good way to approximate speech signals. The estimated autoregressive coefficients can

yield many applications such as speech recognition and transcription, word classification or speaker identification. In this

example, we applied the weighted RLS algorithm on a speech signal representing the word ”Hello” with forgetting factors

λ = 1, λ = 0.95 and λ = 0.90. Figure 2 displays the speech signal over time. Figures 3 shows the evolution of estimated

weights for λ = 1 and λ = 0.90. For λ = 1, weights are slowly evolving while they are rapidly changing for λ = 0.90. Finally,

Figure 4 displays the evolution of estimation error on a logarithmic scale for forgetting factors λ = 1, λ = 0.95 and λ = 0.90.
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6 THE AUTOREGRESSIVE MODEL 6.3 Application to speech processing

Figure 2: Speech signal of the word ”Hello”

Figure 3: Evolution of weights estimated by RLS algorithm with forgetting factors λ = 1 and λ = 0.89
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Figure 4: Evolution of the estimation error on a logarithmic scale
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