
Multilayer Perceptron

Guillaume Frèche

Version 1.0

We have seen in the document about non-linear regression that with the basic structure of a single neuron, we can already

perform classification tasks such as affine or quadratic separation. In this document, we use this simple element to build

more elaborate structures: the neural networks.

1 Network structure

A Multilayer Perceptron (MLP) or Artificial Neural Network (ANN) is an oriented graph divided into L ∈ N, L ≥ 2, distinct

layers.

I Layer ` = 1 is called the input layer;

I layer ` = L is called the output layer;

I any layer ` ∈ J2, L− 1K is called a hidden layer.

For any ` ∈ J1, LK, layer ` consists of n` ∈ N∗ neurons ν(`)1 , ... , ν
(`)
n` .

` = 1

Input layer

ν
(1)
n1

...

...

...

ν
(1)
2

ν
(1)
1

` = 2

ν
(2)
n2

...

...

...

ν
(2)
2

ν
(2)
1

.........

.........

.........

Hidden layers
` = L− 1

ν
(L−1)
nL−1

...

...

...

ν
(L−1)
2

ν
(L−1)
1

` = L

Output layer

ν
(L)
nL

...

...

...

ν
(L)
2

ν
(L)
1

Structure of a multilayer perceptron

For any ` ∈ J2, LK and any i ∈ J1, n`K, neuron ν(`)i is connected to neurons ν(`−1)1 , ... , ν
(`−1)
n`−1 of the previous layer `− 1

through vertices with assigned weights w
(`)
i ,1 , ... ,w

(`)
i ,n`−1

and bias b
(`)
i . The following diagram shows the structure of a single

neuron, that we are going to detail in the next section.

1

2 FEEDFORWARD ALGORITHM

1

ν
(`−1)
n`−1

...

...

ν
(`−1)
2

ν
(`−1)
1

w
(`)
i ,1

w
(`)
i ,2

w
(`)
i ,n`−1

b
(`)
i

+
σ
(`)
i ϕ ν

(`)
i

Structure of single neuron

Remarks:

I The particular single-neuron classifier is an MLP such that ` = 2, n1 = n and n2 = 1.

I This type of neural network is also referred to as a dense neural network (DNN) because a neuron is connected to

all the neurons of the previous layer. In future documents, we will see other types of neural networks that are not

dense, such as the convolutional neural networks.

2 Feedforward algorithm

For simplicity, we denote ν(`)i the response of the corresponding neuron. A neural network is fed with an input vector

x = (x1, ... , xn1) and outputs the vector ŷ =
(
ν
(L)
1 , ... , ν

(L)
nL

)
made of the responses of the output layer neurons.

I Every neuron in the input layer simply returns its associated component in the input vector, i.e. for any i ∈ J1, n1K,

ν
(1)
i = xi .

I For any ` ∈ J2, LK and any i ∈ J1, n`K, neuron response ν(`)i is defined from the neuron responses of the previous

layer
(
ν
(`−1)
j

)
1≤j≤n`−1

, weights (wi ,j), and bias b
(`)
i by:

σ
(`)
i =

n`−1∑
j=1

w
(`)
i ,j ν

(`−1)
j + b

(`)
i ν

(`)
i = ϕ

(
σ
(`)
i

)
= ϕ

n`−1∑
j=1

w
(`)
i ,j ν

(`−1)
j + b

(`)
i

 (1)

Bias can be seen as a weight connecting neuron ν(`)i to a neuron in the previous layer with no input and with output

constantly equal to 1. In this expression, ϕ is the non-linear activation function. A commonly used activation function

is the sigmoid defined by:

ϕ : R→ [0, 1] t 7→ 1

1 + e−t

2

3 BACKPROPAGATION ALGORITHM

ϕ(t)

0

0.5

1

t

This function is differentiable and its derivative can be easily expressed:

∀t ∈ R ϕ′(t) = (1− ϕ(t))ϕ(t)

We can sum up this description in the following algorithm.

Algorithm 1 Feedforward algorithm

1: procedure FEEDFORWARD(x)
2: Input x = (x1, ... , xn1)
3: for i ∈ J1, n1K do
4: ν

(1)
i ← xi

5: end for
6: for ` ∈ J2, LK do
7: for i ∈ J1, n`K do

8: ν
(`)
i ← ϕ

(
σ
(`)
i

)
= ϕ

n`−1∑
j=1

w
(`)
i ,j ν

(`−1)
j + b

(`)
i


9: end for

10: end for
11: Return ŷ =

(
ν
(L)
1 , ... , ν

(L)
nL

)
12: end procedure

3 Backpropagation algorithm

We denote w =
(
w

(`)
i ,j , b

(`)
i

)
the vector representing all the weights and biases in the network. The feedforward algorithm

can be represented as a mapping N such that ŷ = N (x,w). During training, the MLP is fed with examples of input

x1, ... , xN and output y1, ... , yN and aims at minimizing mean square error:

E =
1

N

N∑
k=1

‖ŷk − yk‖2 =
1

N

N∑
k=1

‖N (xk ,w)− yk‖2 =
1

N

N∑
k=1

ξ (xk , yk ,w)

As discussed in the non-linear regression document, the network will rather minimize the individual error ξ as it gets new

data on the fly. Weights and biases are updated according to the following gradient descent:

ŵ(k+1) = ŵ(k) − µk+1∇ξ
(
xk+1, yk+1, ŵ

(k)
)

where µk+1 is the learning factor. To determine gradient∇ξ, we need to compute partial derivatives
∂ξ

∂w
(`)
i ,j

and
∂ξ

∂b
(`)
i

. As

its name indicates, the backpropagation goes through the network backward, updating corresponding partial derivatives,

3

3.1 Output layer 3 BACKPROPAGATION ALGORITHM

weights, and biases based on previous computations. Therefore, we start with weights and biases of the output layer, then

we work on the hidden layers.

3.1 Output layer

By definition, ξ =
nL∑
i=1

(
ν
(L)
i − yi

)2
. For any i ∈ J1, nLK,

∂ξ

∂ν
(L)
i

= 2
(
ν
(L)
i − yi

)
(2)

If we consider bias b
(L)
i and weights w

(L)
i ,j pointing to neuron ν(L)i , then Equation (1) yields:

∂ν
(L)
i

∂b
(L)
i

= ϕ′
(
σ
(L)
i

) ∂ν
(L)
i

∂w
(L)
i ,j

= ν
(L−1)
j ϕ′

(
σ
(L)
i

)
= ν

(L−1)
j

∂ν
(L)
i

∂b
(L)
i

(3)

Using the chain rule,

∂ξ

∂b
(L)
i

=
∂ξ

∂ν
(L)
i

∂ν
(L)
i

∂b
(L)
i

= 2
(
ν
(L)
i − yi

)
ϕ′
(
σ
(L)
i

) ∂ξ

∂w
(L)
i ,j

=
∂ξ

∂ν
(L)
i

∂ν
(L)
i

∂w
(L)
i ,j

= 2
(
ν
(L)
i − yi

)
ν
(L−1)
j ϕ′

(
σ
(L)
i

)
(4)

3.2 Hidden layer

Now we consider a hidden layer ` ∈ J2, L− 1K. Assume that we have already applied the backpropagation algorithm on

layer `+ 1 and we have access to all the partial derivatives
∂ξ

∂ν
(`+1)
i

and
∂ξ

∂w
(`+1)
i ,j

. From chain rule and Equation (1), we

have

∂ξ

∂ν
(`)
i

=

n`+1∑
h=1

∂ξ

∂ν
(`+1)
h

∂ν
(`+1)
h

∂ν
(`)
i

with
∂ν

(`+1)
h

∂ν
(`)
i

= w
(`+1)
h,i ϕ′

(
σ
(`+1)
h

)
(5)

As for the output layer, we use these partial derivatives to get

∂ξ

∂b
(`)
i

=
∂ξ

∂ν
(`)
i

∂ν
(`)
i

∂b
(`)
i

with
∂ν

(`)
i

∂b
(`)
i

= ϕ′
(
σ
(`)
i

)
(6)

∂ξ

∂w
(`)
i ,j

=
∂ξ

∂ν
(`)
i

∂ν
(`)
i

∂w
(`)
i ,j

with
∂ν

(`)
i

∂w
(`)
i ,j

= ν
(`−1)
j ϕ′

(
σ
(`)
i

)
= ν

(`−1)
j

∂ν
(`)
i

∂b
(`)
i

(7)

3.3 Algorithm

We can wrap up these equations in the following algorithm.

4

3 BACKPROPAGATION ALGORITHM 3.3 Algorithm

Algorithm 2 Backpropagation algorithm

1: procedure BACKPROPAGATION(y, µ)
2: Input expected output y = (y1, ... , ynL)
3: Input learning factor µ
4: for ` ∈ J2, LK in decreasing order do
5: for i ∈ J1, n`K do
6: if ` = L then

7:
∂ξ

∂ν
(L)
i

← 2
(
ν
(L)
i − yi

)
8: else
9: for h ∈ J1, n`+1K do

10:
∂ν

(`+1)
h

∂ν
(`)
i

← w
(`+1)
h,i ϕ′

(
σ
(`+1)
h

)
11: end for

12:
∂ξ

∂ν
(`)
i

←
n`+1∑
h=1

∂ξ

∂ν
(`+1)
h

∂ν
(`+1)
h

∂ν
(`)
i

13: end if

14:
∂ν

(`)
i

∂b
(`)
i

← ϕ′
(
σ
(`)
i

)
. Bias derivative

15: b
(`)
i ← b

(`)
i − µ

∂ξ

∂ν
(`)
i

∂ν
(`)
i

∂b
(`)
i

. Bias update

16: for j ∈ J1, n`−1K do

17: w
(`)
i ,j ← w

(`)
i ,j − µν

(`−1)
j

∂ξ

∂ν
(`)
i

∂ν
(`)
i

∂b
(`)
i

. Weight update

18: end for
19: end for
20: end for
21: end procedure

5

	Network structure
	Feedforward algorithm
	Backpropagation algorithm
	Output layer
	Hidden layer
	Algorithm

