
Non-Linear Regression

Guillaume Frèche

Version 1.0

Keywords: Newton-Raphson method, gradient descent, single-neuron classifier.

In this document, we extend our study on regression to non-linear regression, we talk about the Newton-Raphson

method and gradient descent, and we apply these results to a simplified version of neural networks: the single-neuron

classifier.

1 Problem presentation

Given a non linear function ϕ, n ∈ N∗ vectors xi = (xi ,1, ... , xi ,m)
T ∈ Rm and n scalars y1, ... , yn, we are now trying to find

weights w1, ... ,wm such that for any i ∈ J1, nK,

yi = ϕ

 m∑
j=1

wjxi ,j

 = ϕ
(
xTi wm

)
= f (xi ,wm)

Because of the non-linearity of ϕ, and thus of f , it is not possible to write this relation in matrix form anymore, and it is not

possible to apply classical least squares and recursive least squares. However, we are still looking for an estimator ŵm

minimizing the following mean square error function:

E (wm, x1, ... , xn, y1, ... , yn) =
1

n

n∑
i=1

ξ(wm, xi , yi)

where error function ξ is defined as:

ξ(wm, xi , yi) = (yi − f (xi ,wm))
2

There are two possible cases:

I we have access to the whole data x1, ... , xn, y1, ... , yn and we minimize E directly;

I given the linearity of the sum defining E , we can minimize ξ while we get data xi , yi on the fly. We will focus on this

latter case.

2 Newton-Raphson method

2.1 Presentation

We can explicitly compute the partial derivative of error ξ with respect to weight:

∂

∂v
ξ(v, xi , yi) = −2 (yi − f (xi , v))

∂

∂v
f (xi , v) = 2

(
ϕ
(
xTi v
)
− yi

)
ϕ′
(
xTi v
)
xi (1)

1

2.1 Presentation 2 NEWTON-RAPHSON METHOD

but this equation does not yield a straightforward algebraic solution, contrary to the linear case. We need to introduce a

numerical method, the Newton-Raphson method, to provide an approximate solution.

Given g : [a, b] → R a C1 monotonically increasing function such that g(a) < 0 and g(b) > 0, the intermediate value

theorem states that there exists a unique θ∗ ∈]a, b[such that g(θ∗) = 0. The Newton-Raphson method is an iterative

method constructing a sequence (θk)k∈N such that θ0 ∈ [a, b] and whose elements are defined by the recursive formula:

θk+1 = θk −
g(θk)

g ′(θk)

This sequence converges quadratically to θ∗, i.e. lim
k→+∞

θk = θ∗ and there exists a constant C > 0 such that

∀k ∈ N (θk+1 − θ∗) < C (θk − θ∗)2

If we are looking for a local optimum of a C2 function g , we want to solve the equation g ′(θ∗) = 0, and we apply

Newton-Raphson method to g ′, yielding to:

θk+1 = θk −
g ′(θk)

g ′′(θk)

This method can be generalized to a multivariate function g : Rm → R. The recursion formula becomes

θk+1 = θk − (Hg(θk))
−1∇g(θk)

where

∇g(v) = ∂g

∂v
(v) =

(
∂g

∂v1
g(v), ... ,

∂g

∂vm
g(v)

)T

∈ Rm

is the gradient of g in v ∈ Rm, and

Hg(v) =

∂2g

∂v2
1

(v) · · · ∂2g

∂v1vm
(v)

...
. . .

...
∂2g

∂vmv1
(v) · · · ∂2g

∂v2
m

(v)

 ∈ Rm×m

is the Hessian matrix of g in v ∈ Rm. This generalized method still converges quadratically to θ∗, i.e. there exists a constant

C > 0 such that

∀k ∈ N ‖θk+1 − θ∗‖ < C‖θk − θ∗‖2

where ‖.‖ is the `2-norm on Rm. Applying this to our weight update problem, we obtain:

ŵ(k+1)
m = ŵ(k)

m −
(
Hξ(ŵ(k)

m , xk+1, yk+1)
)−1
∇ξ
(
ŵ(k)

m , xk+1, yk+1

)
Note that this form is very similar to weight update equations for RLS and Kalman filters.

Remark: In our description of the Newton-Raphson method, we implicitly assumed that function g has a unique minimum,

to which the sequence of parameters converges. In general, non-linear regression error function does not have a unique

minimum, and the iterative sequence ŵ
(k)
m will converge to the closest minimum from ŵ

(0)
m , making this method sensitive to

its initialization. There are numerical methods to circumvent this flaw, such as genetic algorithms.

2

3 GRADIENT DESCENT AND BFGS ALGORITHM 2.2 Application to linear regression

2.2 Application to linear regression

As an example, let us apply the Newton-Raphson method to the linear regression problem studied in the linear regression

document. In this case, ξ(wm, xk+1, yk+1) =
(
yk+1 − xTk+1wm

)2
, which gives

∂

∂wi
ξ (wm, xk+1, yk+1) = −2

(
yk+1 − xTk+1wm

) ∂

∂wi

(
xTk+1wm

)
= −2

(
yk+1 − xTk+1wm

)
xk+1,i

and ∇ξ (wm, xk+1, yk+1) = −2
(
yk+1 − xTk+1wm

)
xk+1. Then

∂

∂wiwj
ξ (wm, xk+1, yk+1) = −2xk+1,j

∂

∂wi

(
yk+1 − xTk+1wm

)
= 2xk+1,ixk+1,j

Thus

Hξ (wm, xk+1, yk+1) =

(
∂

∂wiwj
ξ (wm, xk+1, yk+1)

)
(i ,j)∈J1,nK2

= 2xk+1x
T
k+1

and the weight update equation becomes

ŵ(k+1)
m = ŵ(k)

m +
(
xk+1x

T
k+1

)−1
xk+1

(
yk+1 − xTk+1ŵ

(k)
m

)
We obtain a formula similar to the RLS weight update equation but with a noticeable difference in the gain factor(
xk+1xTk+1

)−1
xk+1 instead of gk+1 =

(XT
k,mXk,m)

−1xk+1

1 + xTk+1(X
T
k,mXk,m)−1xk+1

. Note that in this derivation, we did not take into

account the error from previous samples, hence the disappearance of the terms Xk,m. This is a behavior that we also find

with neural networks for which the learning process only cares about the current example input, without taking into account

the previous ones.

3 Gradient descent and BFGS algorithm

3.1 Gradient descent

A first solution to circumvent the difficulty of computing the Hessian matrix Hξ is to replace it by a scalar µk > 0 called a

learning factor. The corresponding method is called gradient descent. The weight update equation is then:

ŵ(k+1)
m = ŵ(k)

m − µk+1∇ξ
(
ŵ(k)

m , xk+1, yk+1

)
(2)

This sequences converges linearly to the closest minimum from ŵ
(0)
m , i.e. there exists a constant C ∈]0, 1[such that

∀k ∈ N
∥∥∥ŵ(k+1)

m − ŵm

∥∥∥ ≤ C
∥∥∥ŵ(k)

m − ŵm

∥∥∥
We have to be careful in our choice of µk : if it is too small, the descent will have a very low convergence, if it is too large, the

descent may have stability issues. A good trade-off is to choose µk = µ0α
k as a geometric series, with α ∈]0, 1[. Doing so,

the learning factor is large at the beginning of the descent and then decreases to 0.

3.2 BFGS algorithm

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm proposes to replace the Hessian matrix by an estimate. This

algorithm will be described in an upcoming version of this document.

3

4 SINGLE NEURON CLASSIFIER

4 Single neuron classifier

4.1 Affine separation

An affine hyperplane is a set of coordinates x = (x1, ... , xm) ∈ Rm satisfying the relation:

w0 + w1x1 + · · ·+ wmxm = x̃Twm = 0

where x̃ = (1, x1, ... , xm), and wm = (w0,w1, ... ,wm) is a vector of fixed weights. This hyperplane partitions Rm into two

sets: the set S0 of coordinates x ∈ Rm such that x̃Twm < 0 and the set S1 of coordinates x ∈ Rm such that x̃Twm > 0.

Note that if wm ∈ Rm is such that x̃Twm = 0, then vector αwm with α ∈ R satisfies this relation too, hence the weights

vector is not unique. However, this aspect has no impact on the following.

A classifier is a system inputting coordinates x and whose goal is to determine the label i ∈ {0, 1} such that x ∈ Si . This

system can be modeled by a non linear-regression:

y = ϕ
(
x̃Twm

)
where ϕ is a mapping such that y = 0 if x ∈ S0 and y = 1 if x ∈ S1. Such a mapping ϕ is called an activation function in

machine learning, because it corresponds to neuron activation in neural networks. An obvious choice for ϕ will be:

ϕ(t) = χ[0,+∞[(t) =

 1 if t ≥ 0

0 if t < 0

ϕ(t)

0

1

t

Although this function provides the required output, it presents a major issue: it has a discontinuity in 0, which is annoying

to compute derivatives and apply gradient descent. A good alternative, often used in machine learning, is the sigmoid

function:

∀t ∈ R ϕ(t) =
1

1 + e−t

4

4 SINGLE NEURON CLASSIFIER 4.2 Quadratic separation

ϕ(t)

0

0.5

1

t

It rapidly goes to 0 when t tends to −∞, and to 1 when t tends to +∞, it is infinitely derivable, and its derivative is given by

the relation:

∀t ∈ R ϕ′(t) = ϕ(t) (1− ϕ(t))

Using the derivative of the error ξ found in Equation (1) and the gradient descent update Equation (2), we get:

ŵ(k+1)
m = ŵ(k)

m − 2µk+1

(
ϕ
(
x̃Tk+1ŵ

(k)
m

)
− yk+1

)
ϕ′
(
x̃Tk+1ŵ

(k)
m

)
x̃k+1

= ŵ(k)
m − 2µk+1

(
ϕ
(
x̃Tk+1ŵ

(k)
m

)
− yk+1

)
ϕ
(
x̃Tk+1ŵ

(k)
m

)(
1− ϕ

(
x̃Tk+1ŵ

(k)
m

))
x̃k+1

Figure 1 illustrates the result of a single neuron classifier for linear separation on a set of 300 training examples. Our points

belong to R2 and the separating hyperplane of equation −6 + 2x + 3y = 0 is represented by the black line. Hence we

want to estimate the weights vector wm = (−6, 2, 3). Blue points have coordinates x = (x , y) satisfying x̃Twm < 0 and

magenta points have coordinates x = (x , y) satisfying x̃Twm > 0. The red line corresponds to the weights estimated by the

classifier. Figure 2 displays the evolution of training and test errors versus the increasing number of training examples. Given

a number of training examples between 100 and 2000 with a step of 100, we train the classifier 200 datasets with this number

of examples followed by a test on 10,000 examples, and we averaged these training and test errors over the 200 trials.

4.2 Quadratic separation

An ellipsoid is a set of coordinates x = (x1, ... , xm) ∈ Rm satisfying the relation:

x̃TQmx̃ = 0

where x̃ = (1, x1, ... , xm), and Qm is a fixed upper triangular matrix. This ellipsoid partitions Rm into two sets: the set S0 of

coordinates x ∈ Rm such that x̃TQmx̃ < 0, i.e. the points inside the ellipsoid, and the set S1 of coordinates x ∈ Rm such

that x̃TQmx̃ > 0, i.e. the points outside the ellipsoid. As mentioned in linear regression, vector x and matrix Qm are flatten

as follows

x̃ = (x21 , x1x2, ... , x1xm, x
2
2 , ... , xjxk , ... , x

2
m)

T

Q̃m = (q1,1, q1,2, ... , q1,m, q2,2, ... , qi ,j , ... , qm,m)
T

The single neuron provides the output

y = ϕ
(
x̃TQ̃m

)
where ϕ is again the sigmoid function.

Figure 3 illustrates the result of a single neuron classifier for ellipsoid separation on a set of 800 training examples. Our

5

4.2 Quadratic separation 4 SINGLE NEURON CLASSIFIER

Figure 1: Illustration of Single Neuron Classifier for affine separation

Figure 2: Evolution of training and test errors versus the number of training examples for affine separation

6

4 SINGLE NEURON CLASSIFIER 4.2 Quadratic separation

points belong to R2 and the separated ellipse of equation x2 + 2y2 − 2xy − x + y − 5 = 0 is represented by the black line.

Hence we want to estimate the weights vector Q̃m = (1, 2,−2,−1, 1,−5). Blue points inside the ellipse have coordinates

x = (x , y) satisfying x̃TQ̃m < 0 and magenta points outside the ellipse have coordinates x = (x , y) satisfying x̃TQ̃m > 0.

The red line represents the ellipse corresponding to the weights estimated by the classifier.

Remark: When we flattened matrix Qm, we transformed the space of representation (also called feature space) by changing

2-dimensional coordinates (x , y) into 6-dimensional coordinates (x2, y2, xy , x , y , 1). Doing so, we implicitly perform what is

known in machine learning as the kernel trick. This method will be studied in further details when dealing with Support

Vector Machines.

Figure 3: Illustration of Single Neuron Classifier for quadratic separation

Figure 4 displays the evolution of training and test errors versus the increasing number of training examples. Given a number

of training examples between 100 and 2000 with a step of 100, we train the classifier 200 datasets with this number of

examples followed by a test on 10,000 examples, and we averaged these training and test errors over the 200 trials.

Remarks:

I We see that for both affine and quadratic separations, training and test errors decrease as the number of training

examples goes up, but they seem to get rapidly stuck to a non-zero limit. A way to improve this error bound is to

extend the concept of single-neuron classifiers to more general structures called Multiple Layer Perceptrons (MLP)

or Artificial Neural Networks (ANN), that we will describe in another document.

I Affine separation can be seen as a special case of quadratic separation where the weight coefficients corresponding

to x2, y2 and xy are zero. In its current form, the quadratic separation has very poor performance on affine separation

with an average error around 50% (same as a coin toss), no matter the number of training samples. This question will

be treated in underdetermined systems techniques.

7

5 UPCOMING SUBJECTS

Figure 4: Evolution of training and test errors versus the number of training examples for quadratic separation

5 Upcoming subjects

Here is a list of subjects that will be added in future versions of this document:

I One major issue with non-linear optimization techniques, such as Newton-Raphson method, is that they converge

to the local optimum closest to their initial values. Genetic algorithms propose an alternative to this problem by

generating a population of weight vectors instead of a single and update this population by selecting and mixing the

ones exhibiting the best error performances.

I Support Vector Machines (SVM) are a class of supervised learning algorithms dealing with the affine separation

problem and adding a notion of maximal margin. They can also be adapted to more general problems through the

kernel trick, based on Mercer’s theorem.

8

	Problem presentation
	Newton-Raphson method
	Presentation
	Application to linear regression

	Gradient descent and BFGS algorithm
	Gradient descent
	BFGS algorithm

	Single neuron classifier
	Affine separation
	Quadratic separation

	Upcoming subjects

