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1 Introduction

There have been many debates over the Internet [1], [2], [3], [4] about a very uncanny result: the sum S = 1 + 2 + 3 + 4...

is equal to − 1

12
. This result is very surprising in that summing an infinite sequence of increasing positive integers yields a

finite, negative and non-integer number. In Section 2, we develop various heuristic approaches to obtain this counter-intuitive

result. In Section 3, we give a formal mathematical proof showing that our intuition that the sum should be infinite is correct

as well, we explain how both results are acceptable, and we give a formal proof of S = − 1

12
. In Section 4, we give formal

proofs of the calculations done in Section 2. In Section 5, we give other examples of divergent series. In Section 6, we

provide annexes about Bernoulli numbers, complex analysis, and Euler gamma function.

2 Heuristic approaches to a counter-intuitive result

First and foremost, we warn the reader that, in this section, we develop approaches that had made controversy and yielded

surprising results. This section recalls these approaches but we disclaim them. In Subsection 2.4, we give some preliminary

criticisms, and in Section 3, we develop formal mathematical proofs. We present various ways to compute the sum

S = 1 + 2 + 3 + 4 + ... (1)

yielding to the result S = − 1

12
. In these approaches, we cannot compute S directly and we need to introduce some auxiliary

sums. We define the alternate sum of ones 1:

S1 = 1− 1 + 1− 1 + ... (2)

and we define the alternate sum of positive integers

S2 = 1− 2 + 3− 4 + ... (3)

In the following subsections, we show one method to compute S1 and S , and three methods to compute S2.

2.1 Computation of S1

Multiplying by −1 and adding 1, we get

1− S1 = 1− (1− 1 + 1− 1 + ... ) = 1− 1 + 1− 1 + · · · = S1 (4)

thus 2S1 = 1 and S1 =
1

2
.

1also known as Grandi’s series
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2.2 Computation of S2 2 HEURISTIC APPROACHES TO A COUNTER-INTUITIVE RESULT

2.2 Computation of S2

a First attempt

We have
S1 = 1− 1 + 1− 1 + ...

+ S2 = 1− 2 + 3− 4 + ...

S1 + S2 = 2− 3 + 4− 5 + ...

(5)

Then by subtracting 1 on both sides, we get S1 + S2 − 1 = −1 + 2− 3 + 4− 5 + · · · = −S2. Thus S2 =
1− S1

2
=

1

4
.

b Second attempt

We define the alternate sum of odd integers:

S3 = 1− 3 + 5− 7 + ... (6)

We have
S1 = 1− 1 + 1− 1 + ...

+ S1 = 1− 1 + 1− 1 + ...

+ S3 = 1− 3 + 5− 7 + ...

2S1 + S3 = 3− 5 + 7− 9 + ...

(7)

Then by multiplying both sides by −1 and adding 1, we get 1− 2S1 − S3 = S3 thus S3 =
1− 2S1

2
= 0. Then we compute

S1 = 1− 1 + 1− 1 + ...

+ S3 = 1− 3 + 5− 7 + ...

S1 + S3 = 2− 4 + 6− 8 + ...

= 2(1− 2 + 3− 4 + ... ) = 2S2

(8)

Thus S2 =
S1 + S3

2
=

1

4
.

c Third attempt

This last approach is more subtle and considers the Cauchy product S1 × S1. We have

S1 × S1 = (1− 1 + 1− 1 + ... )× (1− 1 + 1− 1 + ... )

=

× +1 −1 +1 ...

+1 +1 −1 +1 ...

−1 −1 +1 −1 ...

+1 +1 −1 +1 ...
...

...
...

...
. . .

= (1× 1)− (1× 1 + 1× 1) + (1× 1 + 1× 1 + 1× 1)− ...

= 1− 2 + 3− · · · = S2

Thus S2 = S2
1 =

1

4
.
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2 HEURISTIC APPROACHES TO A COUNTER-INTUITIVE RESULT 2.3 Computation of S

2.3 Computation of S

Finally we can compute S . We have

S = 1 + 2 + 3 + 4 + ...

− S2 = −1 + 2− 3 + 4 + ...

S − S2 = 0 + 4 + 0 + 8 + ...

= 4(1 + 2 + 3 + 4 + ... ) = 4S

(9)

Thus S = −S2
3

= − 1

12
.

2.4 Criticisms

As a beginning, when we perform operations on S1 in Equation (4), we assume that the sum S1 = 1− 1 + 1− 1 + ... exists,

or more precisely, that the limit lim
N→+∞

N∑
n=0

(−1)n exists and is finite, which we have not proved yet. We set for all N ∈ N,

SN =
N∑

n=0

(−1)n. Then we easily find that

∀N ∈ N SN =

{
1 if N is even

0 if N is odd

Since the sequence (SN)N∈N oscillates between values 1 and 0, it has no limit, which makes it difficult to talk about S1.

However, before discussing other criticisms of this section, we can discuss a way to circumvent the limit problem of S1. More

formally, we define S the vector space of complex-valued sequences, and SC the set of convergent complex-valued series,

i.e.

SC =

{
(un)n∈N ∈ S, lim

N→+∞

N∑
n=0

un exists and is finite

}
It is clear that SC is a subspace of S . When we compute the sum of a convergent series, we simply compute the value of the

linear form

Σ : SC → C (un) 7→
+∞∑
n=0

un

A cornerstone question is to determine whether it is possible to extend Σ to a mapping Σ′ on S satisfying the properties

1) regularity: Σ′|SC = Σ, i.e. the new summation method Σ′ yields to the same results as Σ on SC ;

2) linearity: Σ′ is a linear form, which we expect from any summation method;

3) stability: for all (un)n∈N, if we define (vn)n∈N such that for all n ∈ N, vn = un+1, then Σ′((un)) = u0 + Σ′((vn)). In

other words, the sum of a series should be the addition of the first term with the sum of the series of the remaining

terms.

The extension is not unique as there are various methods to extend Σ (Cesaro summation, Abel summation, zeta function

regularization, ...) but discussing extension methods is out of the scope of this article. However, our second criticism is that

when we performed operations in Equations (5), (7), (8) and (9), we implicitly assumed linearity of an extended summation

method, without stating which one we were using and without proving its linearity. By the same token, we can criticize that

we have not proved the stability of our summation methods, in Equation (4) for instance.
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3 A FORMAL DEMONSTRATION

3 A formal demonstration

In this section, we formally discuss the summation results yielding to S in terms of limits.

3.1 Proof that our intuition is correct

First we have to state that the expression S = 1 + 2 + 3 + 4 + ... has no mathematical meaning. Dots in mathematical

expressions are pratical to deal with infinite sums, but they can hide anything that we want. For instance, they could hide an

infinite sum of zeros, and S would simply be equal to 10. It is clear from the context that we are trying to sum the terms of the

sequence of natural integers, and it is better to write

S =
+∞∑
n=1

n = lim
N→+∞

N∑
n=1

n

Thus we are interested in the sum of the series
∑

n with the associated sequence of partial sums SN =
N∑

n=1

n. First,

we need to determine whether it is a convergent or divergent series. It is clear2 that for any N ∈ N∗, SN =
N(N + 1)

2
.

Thus lim
N→+∞

SN = lim
N→+∞

N(N + 1)

2
= +∞. Assuming that we are playing in R = R ∪ {−∞, +∞}, we can assert that

S = +∞. This result confirms our intuition that an infinite sum of increasing positive numbers should be equal to infinity!

Then we can legitimately ask about the result S = − 1

12
found in Section 2. We transform our definition of S by noticing that

S = lim
N→+∞

N∑
n=1

1

n−1
= lim

N→+∞

N∑
n=1

lim
s→−1

1

ns
= lim

N→+∞
lim

s→−1

N∑
n=1

1

ns

because we can invert a limit and a finite sum. Two questions arise: can we invert the limits and if so, do we get something

different than +∞, say − 1

12
?

3.2 Limits cannnot always be switched

Before even trying to determine the limit lim
s→−1

lim
N→+∞

N∑
n=1

1

ns
, we may ask if it is surprising that switching limits give different

results. It is not, and we can exhibit a simple example of non uniform convergence. Let us define the sequence of functions

(fn)n∈N for all n ∈ N by fn : [0, 1]→ [0, 1] x 7→ xn. It is well known that this sequence of functions simply converges (but

not uniformly) to the function:

f : [0, 1]→ [0, 1] x 7→

{
0 if x ∈ [0, 1[

1 if x = 1

Then we have on one hand, using the continuity of fn in 1,

lim
n→+∞

lim
x→1
x<1

fn(x) = lim
n→+∞

1 = 1

2If not clear, we can refer to ten year-old Friedrich Gauss’ proof

SN = 1 + 2 + · · ·+ N
+ SN = N + (N − 1) + · · ·+ 1

2SN = (N + 1) + (N + 1) + · · ·+ (N + 1)︸ ︷︷ ︸
N times
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3 A FORMAL DEMONSTRATION 3.3 Proof that the counter-intuition is somewhat correct as well

and on the other hand

lim
x→1
x<1

lim
n→+∞

fn(x) = lim
x→1
x<1

f (x) = 0

Therefore

lim
n→+∞

lim
x→1
x<1

fn(x) 6= lim
x→1
x<1

lim
n→+∞

fn(x)

3.3 Proof that the counter-intuition is somewhat correct as well

We want to determine, if it exists, the limit

lim
s→−1

lim
N→+∞

N∑
n=1

1

ns

We recognize Riemann’s zeta function defined by

ζ(s) = lim
N→+∞

N∑
n=1

1

ns
=

+∞∑
n=1

1

ns

We are looking for the value of ζ(−1) or, more generally, a value of lim
s→−1

ζ(s). We begin by defining the function zeta and

giving some properties.

a Definition and properties of function zeta on the real line

Proposition 3.1

Let s ∈ R. The Riemann series
∑
n∈N∗

1

ns
converges if and only if s > 1.

PROOF : If s < 0, lim
n→+∞

1

ns
= +∞ and if s = 0, lim

n→+∞

1

n0
= 1, thus by using the same reasoning as in Subsection 3.1,

we can assert that the series diverges.

If s > 0, lim
n→+∞

1

ns
= 0, thus we can use the integral test for convergence. Function t 7→ 1

ts
is decreasing over ]0, +∞[,

thus for all k ∈ N∗ and all t ∈ [k , k + 1],
1

(k + 1)s
≤ 1

ts
≤ 1

ks
, which yields to

1

(k + 1)s
=

∫ k+1

k

dt

(k + 1)s
≤
∫ k+1

k

dt

ts
≤
∫ k+1

k

dt

ks
=

1

ks

Summing this inequalities for k ∈ J1, nK,

n∑
k=1

1

(k + 1)s
≤
∫ n+1

1

dt

ts
≤

n∑
k=1

1

ks

Setting Sn(s) =
n∑

k=1

1

ks
, we can write Sn+1(s)− 1 ≤

∫ n+1

1

dt

ts
≤ Sn(s) ≤ 1 +

∫ n

1

dt

ts
.

I If s = 1,
∫ n+1

1

dt

t
= ln(n + 1). Since lim

n→+∞
ln(n + 1) = +∞ and since for all n ∈ N∗, ln(n + 1) ≤ Sn(1), we

deduce that the series3
∑ 1

n
diverges.

I If 0 < s < 1, for any n ∈ N∗,
1

ns
>

1

n
, and since the series

∑ 1

n
diverges, we deduce that the series

∑ 1

ns
also

diverges.
3also known as the harmonic series
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3.3 Proof that the counter-intuition is somewhat correct as well 3 A FORMAL DEMONSTRATION

I If s > 1, then 1− s < 0 and lim
n→+∞

n1−s = 0 thus

lim
n→+∞

∫ n

1

dt

ts
= lim

n→+∞

[
t1−s

1− s

]n
1

=
1

s − 1

Hence sequence (Sn(s))n∈N∗ is increasing and upper bounded by 1 +
1

s − 1
, thus sequence (Sn(s)) and series∑ 1

ns
converge.

Proposition 3.2

Function ζ is defined and continuous on ]1, +∞[. Moreover, lim
s→1
s>1

ζ(s) = +∞.

PROOF : Proposition 3.1 shows that ζ is defined on ]1, +∞[. Let show the continuity of ζ on this interval. Let a ∈]1, +∞[.

For all n ∈ N∗, function s 7→ 1

ns
is continuous on [a, +∞[. Moreover, for all s ∈ [a, +∞[,

∣∣∣∣ 1

ns

∣∣∣∣ =
1

ns
≤ 1

na
with equality if

and only if s = a. Therefore,

sup

{∣∣∣∣ 1

ns

∣∣∣∣ , s ∈ [a, +∞[

}
=

1

na

Since the Riemann series
∑
n∈N∗

1

na
is convergent for a > 1, the series of functions s 7→

∑
n∈N∗

1

ns
is normally convergent on

[a, +∞[, thus it is uniformly convergent on [a, +∞[. Hence the sum function ζ is continuous on [a, +∞[ as the uniform limit

on [a, +∞[ of a sequence of continuous functions on [a, +∞[. Since this is true for any a ∈]1, +∞[, we deduce that ζ is

continous on ]1, +∞[.

Using the proof of Proposition 3.1, we have

∀s ∈]1, +∞[
1

s − 1
≤ ζ(s) ≤ 1 +

1

s − 1

and we can deduce the limit.

We see in this proposition that ζ cannot be extended by continuity on the real line because of its singularity in 1. We need to

study this function on the complex plane to circumvent this singularity.

b Extension to the complex plane

This part uses some results of measure theory and complex analysis. The reader who is not familiar with these notions can

skip to the conclusion in Subsection 3.4 at first reading. We recall some elements of complex analysis in Annex 6.2.

Notation: We denote the half-planes P0 = {z ∈ C, Re(z) > 0} and P1 = {z ∈ C, Re(z) > 1}, and the open disc

D2π = {z ∈ C, |z | < 2π} of center 0 and radius 2π. We also denote Z− = Z \ N∗ the set of nonpositive integers.

Proposition 3.3

Series
∑ 1

ns
is absolutely convergent if and only if s ∈ P1. Therefore, ζ is well defined in P1.

PROOF : For s ∈ C, set a = Re(s) ∈ R and b = Im(s) ∈ R, so that s = a + ib. Then for all n ∈ N∗,

ns = na+ib = nae ib ln n = na cos(b ln n) + ina sin(b ln n)

and
1

ns
=

cos(b ln n)− i sin(b ln n)

na
and

∣∣∣∣ 1

ns

∣∣∣∣ =
1

na

Therefore, series
∑ 1

ns
exactly behaves like series

∑ 1

nRe(s)
.
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3 A FORMAL DEMONSTRATION 3.3 Proof that the counter-intuition is somewhat correct as well

We have shown that function ζ can be extended by definition of the sum to the half-plane P1. However, for any s ∈ C \ P1,

the series does not converge and we cannot use the sum definition of ζ anymore. We need an alternate definition of ζ to

extend its definition to C \ {1}. In the following propositions, we use Euler gamma function Γ. We provide details on this

function in Annex 6.3.

Proposition 3.4

For all s ∈ P1,

ζ(s) =
1

Γ(s)

∫ +∞

0

ts−1

et − 1
dt

PROOF : Function Γ is defined on P0 by

∀s ∈ P0 Γ(s) =

∫ +∞

0

ts−1e−tdt

Thus for all s ∈ P1 ⊂ P0,

ζ(s)Γ(s) =
+∞∑
n=1

Γ(s)

ns
=

+∞∑
n=1

1

ns

∫ +∞

0

ts−1e−tdt =
+∞∑
n=1

∫ +∞

0

( t
n

)s−1
e−t

dt

n

For all n ∈ N∗, function ϕn :]0, +∞[→]0, +∞[ t 7→ t

n
is a C1-diffeomorphism such that for any t ∈]0, +∞[, ϕ′n(t) =

1

n
,

thus by change of variable,

ζ(s)Γ(s) =
+∞∑
n=1

∫ +∞

0

us−1e−nudu

For any N ∈ N∗, set fN :]0, +∞[→]0, +∞[ u 7→ us−1
N∑

n=1

e−nu . Then (fN)N∈N∗ is an increasing sequence of measurable

functions 4 which converges to f :]0, +∞[→]0, +∞[ u 7→ us−1
e−u

1− e−u
. By monotone convergence theorem5, f is

measurable and∫ +∞

0

us−1
e−u

1− e−u
du =

∫ +∞

0

f (u)du = lim
N→+∞

∫ +∞

0

fN(u)du =
+∞∑
n=1

∫ +∞

0

us−1e−nudu

Thus

ζ(s)Γ(s) =

∫ +∞

0

us−1
e−u

1− e−u
du =

∫ +∞

0

us−1

eu − 1
du

which yields to the result.

Lemma 3.5

Function s 7→ 1

Γ(s)

∫ +∞

1

ts−1

et − 1
dt is holomorphic over P1.

PROOF : We aim at applying the theorem of holomorphy of a parametric integral 6.3 to the function

(s, t) 7→ ts−1

et − 1
=

e(s−1) ln t

et − 1
4for all N ∈ N∗ and for almost all x ∈]0,+∞[, fN(x) ≤ fN+1(x)
5also called Beppo-Levi theorem
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3.3 Proof that the counter-intuition is somewhat correct as well 3 A FORMAL DEMONSTRATION

1) For all s ∈ P1, t 7→ e(s−1) ln t

et − 1
is integrable on [1, +∞[.

2) For all t ∈]1, +∞[, t 7→ e(s−1) ln t

et − 1
is holomorphic on P1.

3) Let K be a compact set of P1. There exists M ∈ R∗+ such that for all s ∈ K , Re(s) ≤ M . Since t ∈ [1, +∞[,∣∣∣∣e(s−1) ln tet − 1

∣∣∣∣ ≤ tM−1

et − 1

and the upper bound is integrable. We used the fact that for any s ∈ C, |es | = eRe(s).

Therefore, by the Theorem of holomorphy of a parametric integral 6.3, s 7→
∫ +∞

1

ts−1

et − 1
dt is holomorphic over P1.

Moreover by Proposition 6.5, Γ is holomorphic on P1, thus we deduce the result.

Proposition 3.6

For all s ∈ P1,

ζ(s) =
1

Γ(s)(s − 1)
+

1

Γ(s)

+∞∑
n=1

Bn

n!(n + s − 1)
+

1

Γ(s)

∫ +∞

1

ts−1

et − 1
dt (10)

where the Bn ’s are the Bernoulli numbers described in Annex 6.1. Moreover, ζ can be extended to C \ {1} with possible

poles at −n for n ∈ N.

PROOF : We begin by breaking down the integral form of ζ in Proposition 3.4: for all s ∈ P1,

ζ(s) =
1

Γ(s)

∫ 1

0

ts−1

et − 1
dt +

1

Γ(s)

∫ +∞

1

ts−1

et − 1
dt

We aim at transforming the first integral into a series. By Proposition 6.1, for all (s, t) ∈ P1 × [0, 1],

ts−1

et − 1
=

+∞∑
n=0

Bn

n!
tn+s−2

In order to switch the integral and the sum, we need to apply Fubini’s theorem. Note that for all t > 0, ts = |es ln t | =

eRe(s) ln t = tRe(s). Then, for all t ∈]0, 1],

+∞∑
n=0

∣∣∣∣Bn

n!

∣∣∣∣ |tn+s−2| = tRe(s)−2
+∞∑
n=0

|Bn|tn

n!
= tRe(s)−2

( t
2

(
1− cot

( t
2

))
+ 2
)

For further details on this power series, we refer to the book [5]. Since Re(s) > 1, Re(s) − 2 > −1 and function

t 7→ tRe(s)−2
( t

2

(
1− cot

( t
2

))
+ 2
)

is integrable on ]0, 1]. Hence

∫ 1

0

+∞∑
n=0

∣∣∣∣Bn

n!
tn+s−2

∣∣∣∣ dt < +∞

Therefore, by Fubini’s theorem, we can switch the integral and the sum. Then

∫ 1

0

ts−1

et − 1
dt =

∫ 1

0

+∞∑
n=0

Bn

n!
tn+s−2dt =

∫ 1

0

ts−2dt +
+∞∑
n=1

Bn

n!

∫ 1

0

tn+s−2dt

=

[
ts−1

s − 1

]1
0

+
+∞∑
n=1

Bn

n!

[
tn+s−1

n + s − 1

]1
0

=
1

s − 1
+

+∞∑
n=1

Bn

n!(n + s − 1)

8



3 A FORMAL DEMONSTRATION 3.3 Proof that the counter-intuition is somewhat correct as well

Therefore, for all s ∈ P1,

ζ(s) =
1

(s − 1)Γ(s)
+

1

Γ(s)

+∞∑
n=1

Bn

n!(n + s − 1)
+

1

Γ(s)

∫ +∞

1

ts−1

et − 1
dt

Then, let show that f : s 7→
+∞∑
n=1

Bn

n!(n + s − 1)
is meromorphic on C and has simple poles at −n with n ∈ N.

1) For all n ∈ N∗, fn : s 7→ Bn

n!(n + s − 1)
is meromorphic on C with one simple pole at −n + 1.

2) Let K be a compact set of C. There exists NK ∈ N such that K ⊂ D(0,NK ). For all n > NK , function fn has no pole

in K . Moreover, for all s ∈ K , |n + s| ≥ n − |s| ≥ n − NK . Hence, for all s ∈ K , |fn(s)| ≤ |Bn|
n!(n − NK )

thus
∑
n>NK

fn

is normally convergent over K .

Therefore, by Theorem of series of meromorphic functions 6.4, f is a meromorphic function over C whose simple poles

are non-positive integers. By Lemma 3.5, s 7→ 1

Γ(s)

∫ +∞

1

ts−1

et − 1
dt is holomorphic on P1. Therefore, the expression of ζ

developed in Equation (10) establishes a meromorphic continuation of ζ over C. Moreover, the analytic continuation theorem

implies that this is the unique analytic continuation of ζ on the connex open set C \ (Z− ∪ {1}).

Corollary 3.7

Function ζ has removable poles in Z− and for all k ∈ N, ζ(−k) = (−1)k
Bk+1

k + 1
. Therefore, ζ is a meromorphic function

over C with one simple pole in 1.

PROOF : We study the terms in Equation (10). For k ∈ N, since by Proposition 6.6 Γ has a simple pole in −k ,

lim
s→−k
s 6=−k

1

(s − 1)Γ(s)
= 0 and lim

s→−k
s 6=−k

1

Γ(s)

∫ +∞

1

ts−1

et − 1
dt = 0

We have to find an equivalent of the term
1

Γ(s)

+∞∑
n=1

Bn

n!(n + s − 1)
. By Proposition 6.7,

Γ(s) ∼
s→−k

(−1)k

k!(s + k)
thus

1

Γ(s)
∼

s→−k
(−1)kk!(s + k)

and
+∞∑
n=1

Bn

n!(n + s − 1)
=

Bk+1

(k + 1)!(s + k)
+

+∞∑
n=1

n 6=k+1

Bn

n!(n + s − 1)
∼

s→−k

Bk+1

(k + 1)!(s + k)

Therefore,
1

Γ(s)

+∞∑
n=1

Bn

n!(n + s − 1)
∼

s→−k
(−1)k

Bk+1

k + 1

and lim
s→−k
s 6=−k

ζ(s) = (−1)k
Bk+1

k + 1
. Hence function ζ has removable poles in Z− and for all k ∈ N, ζ(−k) = (−1)k

Bk+1

k + 1
.

Consequence: Using this last property and Example 6.1, we have

ζ(−1) = (−1)1
B2

2
= − 1

12
.
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3.4 Summary

As a conclusion, we cannot determine the limit

lim
s→−1

lim
N→+∞

N∑
n=1

1

ns

because the expression of ζ as the Dirichlet series ζ(s) =
+∞∑
n=1

1

ns
is only true for s ∈ P1, whereas −1 is not in the closure

of P1. The best formal statement that we can make is that:

ζ is the only meromorphic function on C such that ζ(−1) = − 1
12 and for all s ∈ P1, ζ(s) =

+∞∑
n=0

1

ns
.

In the following table, we sum up the results of our discussion in this section.

Mathematicl expression Value
S = 1 + 2 + 3 + 4 + ... No meaning

S = lim
N→+∞

lim
s→−1

N∑
n=1

1

ns
+∞

S = lim
s→−1

lim
N→+∞

N∑
n=1

1

ns
No meaning

S = lim
s→−1

ζ(s) where ζ is the unique meromorphic function on C
− 1

12such that for all s ∈ P1, ζ(s) = lim
N→+∞

N∑
n=1

1

ns

4 Formal demonstration of the heuristic approach

We have seen in Section 3 that the equality S = − 1

12
can be interpreted as the result of lim

s→1
ζ(s) = − 1

12
. But we were

also able in Section 2 to obtain this sum dealing with some surprising auxiliary sums. Inspiring from Section 3, we can see

these sums as limits of some function of s when s tends to −1. We show in this section that calculations in Section 2 are

merely legitimate operations on limits.

4.1 Computing S1 as limit of a power series

Starting with S1, we can interpret Equation (2) as

S1 = lim
s→−1

+∞∑
n=1

sn−1 = lim
s→−1

+∞∑
n=0

sn

By a ratio test, we prove that the radius of convergence of power series
∑

sn−1 is R1 = 1. We denote f1 the sum of this

power series and D1 = {z ∈ C, |z | < 1} the open disc of center 0 and radius 1. Then

∀s ∈ D1 f1(s) =
+∞∑
n=1

sn−1 =
1

1− s

10



4 FORMAL DEMONSTRATION OF THE HEURISTIC APPROACH 4.2 Various ways to compute S2

and this function is holomorphic over D1. Since −1 is in the closure of D1, we can legitimately take the limit

S1 = lim
s→−1
s∈D1

f1(s) = lim
s→−1
s∈D1

+∞∑
n=1

sn−1 = lim
s→−1
s∈D1

1

1− s
=

1

2

which yields the result found in Section 2.

Now we can justify Equation (4) by writing

∀s ∈ D1 f1(s) =
+∞∑
n=0

sn = 1 + s
+∞∑
n=0

sn = 1 + sf1(s)

and by taking the limit,

S1 = lim
s→−1
s∈D1

f1(s) = lim
s→−1
s∈D1

(1 + sf1(s)) = 1− S1.

4.2 Various ways to compute S2

a Limit of a power series

We can interpret Equation (3) as

S2 = lim
s→−1

+∞∑
n=1

nsn−1 = lim
s→−1

+∞∑
n=0

(n + 1)sn

By a ratio test, we show that the radius of convergence of this power series is 1. We denote f2 the limit of this sum. From the

properties of power series, f2 is the derivative of f1, i.e. for all s ∈ D1, f2(s) = f ′1 (s), thus

∀s ∈ D1 f2(s) =
1

(1− s)2

Then by taking the limit,

S2 = lim
s→−1
s∈D1

f2(s) = lim
s→−1
s∈D1

1

(1− s)2
=

1

4

b Using first attempt

In the first attempt, we established that S1 + S2 − 1 = −S2. Inspiring from this expression, we have

∀s ∈ D1 f1(s) + f2(s)− 1 =
+∞∑
n=1

sn−1 +
+∞∑
n=1

nsn−1 − 1 =
+∞∑
n=1

(n + 1)sn−1 − 1

=
+∞∑
n=2

nsn−2 − 1 =
1

s

+∞∑
n=1

nsn−1 − 1

s
− 1 =

f2(s)

s
− 1 + s

s

We can notice that, by taking the limit in this last equation, we find

lim
s→−1

(f1(s) + f2(s)− 1) = − lim
s→−1

f2(s)

Moreover,

f2(s) =
s

s − 1
− s

s − 1
f1(s)− 1 + s

s − 1
=

1

(1− s)2

11
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c Using auxiliary sum S3 (second attempt)

To compute sum S3, we convert the computation of (7) into operations of limits. We can interpret Equation (6) as

S3 = lim
s→−1

+∞∑
n=0

(2n + 1)sn

The radius of convergence of this series is R3 = 1. We denote f3 the sum of this power series. Then

∀s ∈ D1 2f1(s) + f3(s) = 2
+∞∑
n=0

sn +
+∞∑
n=0

(2n + 1)sn =
+∞∑
n=0

(2n + 3)sn =
+∞∑
n=1

(2n + 1)sn−1 =
f3(s)

s
− 1

s

We can notice that we are able to retrieve Calculation (7) by taking the limit in this last expression as s goes to −1, we obtain:

2S1 + S3 = lim
s→−1
s∈D1

(2f1(s) + f3(s)) = lim
s→−1
s∈D1

(
f3(s)

s
− 1

s

)
= −S3 + 1

Finally, we have:

f3(s) =
2sf1(s)

1− s
+

1

1− s
=

1 + s

(1− s)2

Hence S3 = lim
s→−1
s∈D1

f3(s) = 0. Inspiring from (8), we have

∀s ∈ D1 f1(s) + f3(s) =
+∞∑
n=0

sn +
+∞∑
n=0

(2n + 1)sn = 2
+∞∑
n=0

(n + 1)sn = 2f2(s)

Thus f2(s) =
f1(s) + f3(s)

2
=

1

(1− s)2
.

d Cauchy product (third attempt)

Power series
∑

ans
n where an =

n∑
k=0

1 = n+1 is the Cauchy product of
∑

sn by itself. Therefore, the radius of convergence

of this series is 1, and

∀s ∈ D1 f2(s) =
+∞∑
n=0

(n + 1)sn =

(
+∞∑
n=0

sn

)2

=
1

(1− s)2

4.3 Computation of S

a Limitation of power series

We can interpret Equation (1) as

S = lim
s→−1

+∞∑
n=0

(n + 1)s2n

As we have already seen, the radius of convergence of
∑

(n + 1)s2n is 1 and this series is the Cauchy product of
∑

s2n by

itself. Therefore, if we denote ` the sum of this power series, then

∀s ∈ D1 `(s) =

(
+∞∑
n=0

s2n

)2

=
1

(1− s2)2

12
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Taking the limit, we obtain lim
s→−1
s∈D1

`(s) = +∞. In this case, we are not able to retrieve S = − 1

12
. So far in this section, we

have dealt with power series but we have not tackle with Dirichlet series yet, i.e. series of the form
∑ an

ns
, whose function ζ

is a particular example. Thus, we need to introduce another auxiliary function to find a relation between S2 and S .

b Dirichlet eta function

We begin by transforming Equation (3) into a limit:

S2 = lim
s→−1

lim
N→+∞

n∑
n=1

(−1)n−1

ns

We recognize Dirichlet’s eta function defined by

η(s) = lim
N→+∞

n∑
n=1

(−1)n−1

ns
=

+∞∑
n=1

(−1)n−1

ns

As an alternate series,
∑ (−1)n−1

ns
is simply convergent for s ∈ P0 and absolutely convergent for s ∈ P1.

Proposition 4.1

For all s ∈ P1,

η(s) = (1− 21−s)ζ(s)

PROOF : Inspiring from Calculation (9), we have for all s ∈ P1,

ζ(s)− η(s) =
+∞∑
n=1

1 + (−1)n

ns
= 21−s

+∞∑
n=1

1

ns
= 21−sζ(s)

Therefore, η(s) = (1− 21−s)ζ(s).

Proposition 4.2

Function η can be extended by analytic continuation to C, for all s ∈ C\{1}, η(s) = (1−21−s)ζ(s), and lim
s→−1

η(s) =
1

4
.

PROOF : Functions s 7→ 1− 21−s and ζ are holomorphic on C \ {1}, thus function s 7→ (1− 21−s)ζ(s) is holomorphic on

C \ {1}. By Analytic continuation theorem 6.2, for all s ∈ C \ {1},

η(s) = (1− 21−s)ζ(s)

Then by taking the limit,

lim
s→−1

η(s) = lim
s→−1

(1− 21−s)× lim
s→−1

ζ(s) = (−3)×
(
− 1

12

)
=

1

4

Hence we find S2 =
1

4
.

5 Further examples of divergent series

In this section, we present other interesting and surprising divergent series. As we have done previously, we give a heuristing

approach in the assignement of a value to this sums when it is possible, and we show a formal proof yielding to this result.

13



5.1 1 + 1 + 1 + 1 + ... 5 FURTHER EXAMPLES OF DIVERGENT SERIES

5.1 1 + 1 + 1 + 1 + ...

We begin our study with the sum

S4 = 1 + 1 + 1 + 1 + ...

We see that this sum is similar to Grandi’s series (3). However, to the best of our knowledge, there is no conclusive heuristic

approach dealing with S1 and S4. Inspiring from function ζ, we can write

S4 = lim
s→0

lim
N→+∞

N∑
n=1

1

ns
= lim

s→0
ζ(s)

Using corollary 3.7, we have

S4 = ζ(0) = (−1)0
B1

1
= −1

2

which is the value that we usually assign to this divergent series. Incidentally, this result provides another method to compute

the value of Grandi’s series S1. Indeed we can see that

S1 = lim
s→0

lim
N→+∞

N∑
n=1

(−1)n−1

ns
= lim

s→0
η(s)

By Proposition 4.2, we have

∀s ∈ C \ {1} η(s) = (1− 21−s)ζ(s)

Therefore,

η(0) = (1− 21−0)ζ(0) = (−1)×
(
−1

2

)
=

1

2

which gives once again the result S1 =
1

2
.

5.2 Sum of squares of positive integers

We now look at the sum of squares of positive integers:

S5 = 1 + 4 + 9 + 16 + ... (11)

To determine this sum, we use S3 defined in Equation (6) and the auxiliary alternate sum of squares of positive integers:

S ′5 = 1− 4 + 9− 16 + ... (12)

We have

1− S3 = 3− 5 + 7 − 9 + ...

+ S ′5 = 1− 4 + 9 − 16 + ...

1− S3 + S ′5 = 4− 9 + 16− 25 + ...

Thus S3 − S ′5 = 1− 4 + 9− 16 + 25− · · · = S ′5, and S ′5 =
S3
2

= 0. Then we compute S5. We have

S5 = 1 + 4 + 9 + 16 + 25 + 36 + ...

− S ′5 = −1 + 4− 9 + 16− 25 + 36− ...

S5 − S ′5 = 0 + 8 + 0 + 32 + 0 + 72 + ...

= 8(1 + 4 + 9 + 16 + ... ) = 8S5

14



5 FURTHER EXAMPLES OF DIVERGENT SERIES 5.3 Sum and alternate sum of powers of 2

Thus S5 = −S ′5
7

= 0.

Formally, we can interpret Equation (12) as

S ′5 = lim
s→−1

+∞∑
n=0

(n + 1)2sn

The radius of convergence of this series is R5 = 1. We denote f5 the sum of this power series. From Subsection 4.2, we

have for all s ∈ D1,

f2(s) =
+∞∑
n=0

(n + 1)sn =
1

(1− s)2
which gives sf2(s) =

+∞∑
n=0

(n + 1)sn+1 =
s

(1− s)2

Therefore,

f5(s) =
+∞∑
n=1

(n + 1)2sn = (sf2(s))′ =
1 + s

(1− s)3

By taking the limit, we have S ′5 = lim
s→−1

f5(s) =
1− 1

(1 + 1)3
= 0. To relate Equations (11) and (12), we use the relation

between functions ζ and η. Indeed, we can write:

S5 = lim
s→−2

ζ(s) and S ′5 = lim
s→−2

η(s)

Using Corollary 3.7 and Proposition 4.2, we have

S5 = ζ(−2) = (−1)2
B3

3
= 0 and S ′5 = η(−2) = (1− 21−(−2))ζ(−2) = −7ζ(−2) = 0

5.3 Sum and alternate sum of powers of 2

a Sum of powers of 2

We study the sum of powers of 2:

S6 = 1 + 2 + 4 + 8 + ... (13)

Multiplying by 2 and adding 1, we get 1 + 2S6 = 1 + 2 + 4 + 8 + · · · = S6. Therefore, S6 = −1.

Formally, we can interpret Equation (13) as the limit:

S6 = lim
s→2

+∞∑
n=0

sn = lim
s→2

f1(s)

We have already encountered function f1 in Subsection 4.1, but we have determined that the radius of convergence of the

power series that defines f1 is R1 = 1, while 2 is not in the closure of the open disc D1. However, as for function ζ, using

the form f1(s) =
1

1− s
, we can extend f1 to a meromorphic function over C with one simple pole in 1. Then it becomes

legitimate to take the limit when s goes to 2:

S6 = lim
s→2

1

1− s
= −1

b Alternate sum of powers of 2

We study the alternate sum of powers of 2:

S ′6 = 1− 2 + 4− 8 + ... (14)

To determine this sum, we use the auxiliary sum

S ′′6 = 1 + 4 + 16 + 64 + ... (15)

15



5.4 Sum of cosines 5 FURTHER EXAMPLES OF DIVERGENT SERIES

Inspiring from the computation of S6, we multiply S ′′6 by 4 and we add 1 to get

1 + 4S ′′6 = 1 + 4 + 16 + 64 + · · · = S ′′6

which gives S ′′6 = −1

3
. Then

S6 = 1 + 2 + 4 + 8 + 16 + 32 + ...

− S ′6 = −1 + 2− 4 + 8− 16 + 32− ...

S6 − S ′6 = 0 + 4 + 0 + 16 + 0 + 64 + ...

= 4(1 + 4 + 16 + ... ) = 4S ′′6

(16)

Thus S ′6 = S6 − 4S ′′6 = −1 +
4

3
=

1

3
.

Formally, we can interpret Equations (14) and (15) as limits:

S ′6 = lim
s→−2

1

1− s
= lim

s→2

1

1 + s
=

1

3
and S ′′6 = lim

s→4

1

1− s
= lim

s→2

1

1− s2
= −1

3

If we denote f6 : s 7→ 1

1 + s
and g6 : s 7→ 1

1− s2
, then we can interpret Calculation (16) as

f1(s)− f6(s) =
1

1− s
− 1

1 + s
=

2s

1− s2
= 2sg6(s)

Then, by taking the limit as s tends to 2,

S6 − S ′6 = lim
s→2

(f1(s)− f6(s)) = lim
s→2

2sg6(s) = 4S ′′6

5.4 Sum of cosines

So far, we have only dealt with numerical divergent series, but it is also possible to study functional divegent series, for

instance:

t 7→ 1

2
+ cos(t) + cos(2t) + cos(3t) + ...

Harmonic analysis connoisseurs will recognize the Fourier series of the Dirac comb of period 2π and amplitude π:

C2π : t 7→ π

+∞∑
n=−∞

δ(t − 2πn)

where t 7→ δ(t − 2πn) is the Dirac mass centered on 2πn. Indeed, since C2π is periodic of period 2π, we can write the

partial sum of its Fourier series:

∀N ∈ N ∀t ∈ R SN(C2π)(t) =
N∑

n=−N

an(C2π)e int

and its Fourier coefficients

∀n ∈ N an(C2π) =
1

2π

∫ π

−π
C2π(t)e−intdt

Moreover, SN(C2π) converges to C2π as N goes to infinity. Then we have

∀n ∈ N an(C2π) =
1

2

∫ π

−π
δ(t)e−intdt =

1

2
e−in0 =

1

2
.

16
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Thus we have

∀t ∈ R SN(C2π)(t) =
1

2

N∑
n=−N

e int =
1

2
+

N∑
n=1

cos(nt)

and we can write

∀t ∈ R C2π(t) =
1

2
+ lim

N→+∞

N∑
n=1

cos(nt) =
1

2
+ cos(t) + cos(2t) + cos(3t) + ...

Since for all t ∈ R \ 2πZ, C2π(t) = 0, we have the new numerical divergent series

∀t ∈ R \ 2πZ
1

2
+ cos(t) + cos(2t) + cos(3t) + · · · = 0

6 Annexes

6.1 Bernoulli numbers

We recall that D2π = {z ∈ C, |z | < 2π} denotes the open disc of center 0 and radius 2π.

Proposition 6.1

There exists a sequence of complex numbers (Bn)n∈N such that for all t ∈ D2π ,

t

et − 1
=

+∞∑
n=0

Bn

n!
tn

The sequence (Bn)n∈N satisfies the recurrence relation

B0 = 1 and ∀n ∈ N∗ Bn = − 1

n + 1

n−1∑
k=0

(
n + 1

k

)
Bk (17)

The Bn ’s are called the Bernoulli numbers.

PROOF : Set f : C→ C t 7→ t
et−1 . The denominator of this fraction is equal to 0 if and only if there exists k ∈ Z such

that t = ik2π. However, in the neighborhood of 0, we have

t

et − 1
=

t→0
t 6=0

t

t + o(t)
=

t→0
t 6=0

1

1 + o(1)

thus lim
t→0

f (t) = 1 and 0 is a removable pole of f . Therefore, the set of poles of function f is P = {ik2π, k ∈ Z∗}, and f

is defined on the domain C \ P . As a ratio of two holomorphic functions, f is a holomorphic function on D2π. Hence f is

an analytic function, which means that it admits a power series on D2π, i.e. there exists a sequence (Bn)n∈N of complex

numbers such that

∀t ∈ D2π
t

et − 1
=

+∞∑
n=0

Bn

n!
tn

Since for any t ∈ C, et − 1 =
+∞∑
m=1

tm

m!
, we multiply both sides of last equation by et − 1, and we have the following Cauchy

17
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product

∀t ∈ D2π t =

(
+∞∑
n=0

Bn

n!
tn

)(
+∞∑
m=0

tm+1

(m + 1)!

)
=

+∞∑
n=0

(
n∑

k=0

Bk

k!(n − k + 1)!

)
tn+1

=
+∞∑
n=0

(
n∑

k=0

(
n + 1

k

)
Bk

)
tn+1

(n + 1)!

By unicity of the Taylor series of t 7→ t, we obtain B0 = 1 and

∀n ∈ N∗
n∑

k=0

(
n + 1

k

)
Bk = 0 =⇒ Bn = − 1

n + 1

n−1∑
k=0

(
n + 1

k

)
Bk

which yields the result.

Example 6.1

Using the recurrence relation in (17), we have B1 = −1

2
, B2 =

1

6
, B3 = 0, and so on.

6.2 Some results of complex analysis

In this annex, we remind some definitions and theorems of complex analysis. Proofs are admitted and can be found in any

good textbook dealing with complex analysis. In this subsection, U denotes an open subset of C.

Definition 6.1 (Holomorphic function)

A function f : U → C is holomorphic on U if it is C-differentiable, i.e. for all z0 ∈ U , the limit lim
z→z0
z 6=z0

f (z)− f (z0)

z − z0
exists

and is finite. In this case, f is of class C∞ on U .

Definition 6.2 (Analytic function)

A function f : U → C is analytic on U if it admits a Taylor series development at all point of U , i.e. for all z0 ∈ U , there

exists a sequence of complex numbers (an)n∈N and an open set V ⊂ U such that for all z ∈ V , f (z) =
+∞∑
n=0

an(z − z0)n.

Remark: By Morera’s theorem, if f is a continuous function on U , then f is holomorphic on U if and only if f is analytic on

U .

Theorem 6.2 (Analytic continuation theorem)

Let U an open and connex subset of C, and f and f two analytic functions on U . If f and g coincide in the neighborhood

of a point of U , then f = g on U .

Definition 6.3 (Removable singularity)

Let a ∈ U and f a holomorphic function over U \ {a}. If f can be extended into a holomorphic function in the vicinity of a,

then a is a removable singularity of f .

Definition 6.4 (Pole)

Let a ∈ U and f a holomorphic function over U \ {a}. If there exists a finite sequence of complex numbers (a−1, ... , a−m)

with m ≥ 1 and a−m 6= 0 such that function z 7→ f (z)−
m∑

k=1

a−k
(z − a)k

has a removable singularity in a, then a is a pole

of order (or multiplicity) m of f .

18
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Definition 6.5 (Meromorphic function)

A function f : U → C is meromorphic on U if there exists a locally finite subset A of U such that f is holomorphic on

U \ A and every point of A is a pole of f .

Theorem 6.3 (Holomorphy of parametric integral)

Let (X ,µ) be a measured space and f : U × X → C. For s ∈ C, we set F (s) =

∫
X

f (s, t)dµ(t).

1) For all s ∈ U , t 7→ f (s, t) is integrable.

2) For almost all t ∈ X , s 7→ f (s, t) is holomorphic.

3) For all compact subset K of U , there exists g ∈ L1(X ) such that for all s ∈ K and for almost all t ∈ X ,

|f (s, t)| ≤ g(t).

Then F is holomorphic over U , and for all s ∈ U and n ∈ N, F (n)(s) =

∫
X

∂nf

∂sn
(s, t)dµ(t).

Theorem 6.4 (Series of meromorphic functions)

Let U be an open set of C, and (fn)n∈N a sequence of functions U 7→ C.

1) Every fn is a meromorphic function over U .

2) For all compact set K , there exists NK ∈ N such that for all n ≥ NK , functions fn have no poles in K and
∑
n≥NK

fn

uniformly converges over K .

Then
∑

fn is meromorphic and we can take the derivative of the series term by term.

6.3 Properties of function Γ

We recall that P0 denotes the half-plane {z ∈ C, Re(z) > 0}.

Proposition 6.5

For s ∈ C, we set

Γ(s) =

∫ +∞

0

ts−1e−tdt

The function Γ is defined and holomorphic on the domain P0.

PROOF : We aim at applying the Theorem of holomorphy of a parametric integral 6.3 to the function

(s, t) 7→ ts−1e−t = e(s−1) ln te−t

1) For all s ∈ P0, t 7→ e(s−1) ln te−t is integrable on R∗+.

2) For all t ∈ R∗+, s 7→ e(s−1) ln te−t is holomorphic on P0.

3) Let K be a compact subset of P0. There exists (ε,M) ∈
(
R∗+
)2

such that for any s ∈ K , Re(s) ∈ [ε,M].

I If t ∈]0, 1], ∣∣∣e(s−1) ln te−t∣∣∣ ≤ e(ε−1) ln t =
1

t1−ε
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I If t ∈ [1, +∞[, ∣∣∣e(s−1) ln te−t∣∣∣ ≤ tM−1e−t

In both cases, the upper bound is integrable. We used the fact that for any s ∈ C, |es | = eRe(s).

Therefore, by the Theorem of holomorphy of a parametric integral, Γ is holomorphic on P0.

Proposition 6.6

For all s ∈ P0,

Γ(s) =
+∞∑
n=0

(−1)n

n!(s + n)
+

∫ +∞

1

ts−1e−tdt

Moreover, Γ can be extended to C \ Z− with simple poles at −n for n ∈ N.

PROOF : We begin by breaking down the integral: for all s ∈ P0,

Γ(s) =

∫ 1

0

ts−1e−tdt +

∫ +∞

1

ts−1e−tdt

We aim at transforming the first integral into a series. For all (s, t) ∈ P0 × [0, 1],

ts−1e−t =
+∞∑
n=0

(−1)n

n!
tn+s−1

In order to switch the integral and the sum, we need to apply Fubini’s theorem. Note that for all t > 0, ts = |es ln t | =

eRe(s) ln t = tRe(s). Then, for all t ∈]0, 1],

+∞∑
n=0

∣∣∣∣ (−1)n

n!

∣∣∣∣ |tn+s−1| = tRe(s)−1
+∞∑
n=0

tn

n!
= tRe(s)−1et

Since Re(s) > 0, Re(s)− 1 > −1 and function t 7→ tRe(s)−1et is integrable on ]0, 1]. Hence

∫ 1

0

+∞∑
n=0

∣∣∣∣ (−1)n

n!
tn+s−1

∣∣∣∣ dt < +∞

Therefore, by Fubini’s theorem, we can switch the integral and the sum:

∫ 1

0

ts−1e−tdt =

∫ 1

0

+∞∑
n=0

(−1)n

n!
tn+s−1dt =

+∞∑
n=0

(−1)n

n!

∫ 1

0

tn+s−1dt =
+∞∑
n=0

(−1)n

n!

[
tn+s

n + s

]1
0

=
+∞∑
n=0

(−1)n

n!

1

n + s

Therefore, for all s ∈ P0,

Γ(s) =
+∞∑
n=0

(−1)n

n!(s + n)
+

∫ +∞

1

ts−1e−tdt (18)

Then, let show that f : s 7→
+∞∑
n=0

(−1)n

n!(n + s)
is meromorphic on C and has simple poles at −n with n ∈ N.

1) For all n ∈ N, fn : s 7→ (−1)n

n!(n + s)
is meromorphic on C with one simple pole at −n.

2) Let K be a compact set of C. There exists NK ∈ N such that K ⊂ D(0,NK ). For all n > NK , function fn has no pole

in K . Moreover, for all s ∈ K , |n + s| ≥ n − |s| ≥ n − NK . Hence, for all s ∈ K , |fn(s)| ≤ 1

n!(n − NK )
thus

∑
n>NK

fn

is normally convergent over K .
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Therefore, by Theorem of series of meromorphic functions 6.4, f is a meromorphic function over C whose simple poles

are non-positive integers. Using the proof of Proposition 6.5, we show that s 7→
∫ +∞

1

ts−1e−tdt is holomorphic on P0.

Therefore, the expression of Γ developed in Equation (18) establishes a meromorphic continuation of Γ over C. Moreover, the

Analytic continuation theorem 6.2 implies that this is the unique analytic continuation of Γ on the connex open set C \ Z−.

Proposition 6.7

For all k ∈ N,

Γ(s) ∼
s→−k

(−1)k

k!(s + k)

PROOF : From Proposition 6.6, we have for all s ∈ C \ Z−,

Γ(s) =
(−1)k

k!(s + k)
+

+∞∑
n=0
n 6=k

(−1)n

n!(s + n)
+

∫ +∞

1

ts−1e−tdt

Since the last two terms converge to a finite value as s tends to −k , we find the expected result.
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